poj 2533 N皇后问题 -- 递归回溯(打表)

N皇后问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16868    Accepted Submission(s): 7657


Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

 

Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
 

Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
 

Sample Input
  
  
1 8 5 0
 

Sample Output
  
  
1 92 10
 

Author
cgf
 

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
int num;
int map[11];
	int n;
int place(int x){
	int i;
	for(i=1;i<x;i++){
		if(map[x]==map[i]||abs(i-x)==abs(map[i]-map[x]))
			return 0;
	}
	return 1;
}
void queen(int x){
	int i;
	if(x>n)
		num++;
	else{
		for(i=1;i<=n;i++){
			map[x]=i;
			if(place(x)){
				queen(x+1);
			}
		}
	}
}
int main(){
	int a[11]={0,1,0,0,2,10,4,40,92,352,724};
	while(~scanf("%d",&n)&&n!=0){
		//memset(map,0,sizeof(map));
		//num=0;
		//queen(1);
		printf("%d\n",a[n]);
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个关于在 $n \times n$ 的棋盘上放置 $n$ 个皇后的问题,其中皇后不能相互攻击,即在同一行、同一列或同一对角线上。 有几种经典的解法可以解决这个问题,下面介绍两种: 1. 回溯算法:从第一行开始,每次在下一行中选择一个合法的位置放置皇后,并继续递归到下一行。如果到了最后一行仍然能够放置,则得到了一个解。如果无法放置,则需要回溯到上一行重新选择位置。 2. 位运算优化的回溯算法:对于每一行,使用一个二进制数表示该行可以放置皇后的位置。在递归过程中,用三个二进制数分别表示列、左斜线和右斜线上已经有皇后的位置。每次尝试在下一行中放置皇后时,通过位运算快速判断该位置是否合法,并更新三个二进制数。如果到了最后一行仍然能够放置,则得到了一个解。如果无法放置,则需要回溯到上一行重新选择位置。 以上两种方法都是经典解法,具有较高的效率和普适性。在实际应用中,可以根据具体需求进行选择和优化。 ### 回答2: 解决这个问题可以采用回溯算法。从第一行开始,尝试将皇后放在每个位置上,然后递归调用下一行。如果某个位置不能放置皇后(因为该位置的同行、同列或同斜线已经有其他皇后了),就回溯到上一行并尝试下一个位置。如果所有行都被尝试过了,则找到一种解法,计数器加一。整个过程可以用一个数列来表示棋盘,数列的索引表示列数,数列中的值表示该列上的皇后的行数。 具体的,我们可以定义一个列表`cols`,其中`cols[i]`表示第i列上的皇后放在了哪一行。每次递归时,从上到下按行数尝试在第i列上放置皇后。若成功则递归求解下一行,否则尝试在该列的下一行重新放置皇后。若所有行都被尝试过,则回溯到上一行。 代码如下: ```python def solveNQueens(n: int) -> int: def dfs(cols, row): if row == n: # 找到一种合法解法 nonlocal count count += 1 else: for i in range(n): if check(cols, row, i): cols[row] = i dfs(cols, row + 1) def check(cols, row, col): for i in range(row): if cols[i] == col or abs(cols[i] - col) == row - i: # 同列 或 同对角线(斜率为±1) return False return True cols = [-1] * n count = 0 dfs(cols, 0) return count ``` 其中`check()`函数用于检查在第`row`行第`col`列放置皇后是否合法。 该算法的时间复杂度为$O(n^n)$,因为每一行有n种可能的放置方法,总共有n行。空间复杂度为$O(n)$,因为需要一个长度为n的列表来维护棋盘。 可以通过调用`solveNQueens(n)`函数来求解n皇后的解法数量。 ### 回答3: n皇后问题,是计算机领域中的著名问题之一。这个问题的目标是在n*n大小的棋盘上放置n个皇后,使得它们相互之间无法攻击到对方。 为了解决这个问题,需要一种算法来找到所有可能的合法解。回溯算法是一种非常常见的解决方案,也是解决n皇后问题的经典算法。 回溯算法的基本思路是,在搜寻所有可能的解时,如果发现了一个不符合要求的解,就返回前一个状态,并继续搜索其他可能的解,直到找到符合要求的解或者结束搜索。 对于n皇后问题,可以使用回溯算法来找到所有合法解,具体步骤如下: 1. 将棋盘初始化为空,即没有皇后。 2. 从第一列开始,依次考虑每一个位置(从上到下)是否可以放置皇后。如果可以,就将皇后放到这个位置上,并进入下一列进行搜索。 3. 如果在某一列上找不到位置可以放置皇后,就返回前一列,并尝试下一个位置。 4. 如果在最后一列找到了合法解,就记录这个解,并返回前一列,继续搜索其他解。 一旦找到所有的合法解,就可以计数了。答案就是合法解的数量。 这个算法的复杂度取决于搜索解空间的大小,即所有可能的解的数量。由于每个皇后只能放在一行,所以每行只能放一个皇后,因此解空间的大小为n^n。但是,在搜索过程中,有很多不符合要求的解会被排除掉,这样可以大大减少搜索的时间。 总的来说,回溯算法是一种相对高效的解决n皇后问题方法。虽然算法的时间复杂度很高,但是在实际应用中,由于存在很多优化,所以算法仍然可以快速有效地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值