统计知识补充:方差,协方差,相关系数。

基础统计知识补充:

三者关系图

三者关系图

叙述

方差:一维:  Cov(X,X)=Var(X)=(XiX¯)(XiX¯)n1
协方差:二维:  Cov(X,Y)=(XiX¯)(YiY¯)n1

X和Y代表两个维度,i=1,2,…,n代表n个样本
协方差体现了两个维度正负相关性,值的大小一定程度上体现其程度(受量纲影响)。

协方差阵:p维度数据,得P*P的对称矩阵,对称原因:  Cov(X,Y)=Cov(Y,X)
相关系数矩阵:标准化后的协方差阵,消量纲。理解如下:

Cor(X,Y)=Cov(X,Y)D(X)D(Y)

分解:
Cor(X,Y)=1n1XiX¯¯¯D(X)YiY¯¯¯D(Y)

每个数都除以 D(X) 即均方差距离 , 消除量纲影响。将其变换在0-1之间。
因协方差能够反映两变量之间的线性相关性(正相关,负相关,不相关)。
所以消除量纲后,则能反映两变量的相关程度。

一般判断:r < 0.4 低度线性相关;0.4 < r < 0.7中度线性相关;r > 0.9高度线性相关。

与协方差相关算法(不定期更)

马氏距离(距离判别): D2(x,y)=(xy)1(xy)
其中x,y为样本
主成分分析,条件:主成分之间协方差为0.线性不相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值