使用ES与AIAS实现以图搜图

本文介绍了如何利用Elasticsearch(ES)创建向量索引,结合AIAS库的图像特征提取功能,实现以图搜图。通过定义实体类和工具类,将图片特征同步到ES,然后使用搜索算法找到相似图片。代码示例展示了从CentOS环境下的jar包集成到特征提取和搜索的完整流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

进行技术储备。直接上代码。

创建ES向量索引

PUT test_img
{
  "settings": {
    "index.codec": "proxima",
    "index.vector.algorithm": "hnsw",  
    "index.number_of_replicas":1,  
    "index.number_of_shards":3 
  },
  "mappings": {
    "properties": {
      "feature": {
        "type": "proxima_vector", //向量索引
        "dim": 512, //512维度
        "vector_type": "float"
      },
      "goods_id":{
        "type": "long"
      }
    }
  }
}

集成AIAS的jar包

注意本环境是centos8.2,centos7.9以上才支持图片引擎
图片处理jar包:AIAS官方

<dependency>
			<groupId>ai.djl</groupId>
			<artifactId>api</artifactId>
			<version>0.22.0</version>
		</dependency>
		<dependency>
			<groupId>ai.djl</groupId>
			<artifactId>basicdataset</artifactId>
			<version>0.22.0</version>
		</dependency>
		<dependency>
			<groupId>ai.djl</groupId>
			<artifactId>model-zoo</artifactId>
			<version>0.22.0</version>
		</dependency>
		<!-- Pytorch -->
		<dependency>
			<groupId>ai.djl.pytorch</groupId>
			<artifactId>pytorch-engine</artifactId>
			<version>0.22.0</version>
		</dependency>
		<dependency>
			<groupId>ai.djl.pytorch</groupId>
			<artifactId>pytorch-model-zoo</artifactId>
			<version>0.22.0</version>
		</dependency>
		<dependency>
			<groupId>ai.djl.opencv</groupId>
			<artifactId>opencv</artifactId>
			<version>0.22.0</version>
		</dependency>

提取图片特征

先定义一个实体类

@Data
public class Fc_GoodsFeature {
    Long goods_id;
    float[] feature;
    String goods_name;
}

定义图片提取工具类

import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelZoo;
import ai.djl.repository.zoo.ZooModel;
import lombok.extern.slf4j.Slf4j;
import org.opencv.core.Mat;

@Slf4j
public class ImageUtil {
    public static Criteria<Image, float[]> criteria = null;
    public static ZooModel model = null;
    public static Predictor<Image, float[]> predictor = null;
    public static ImageFactory imageFactory = null;

    public static void ImageInit(){
        try{
            criteria = new ImageEncoderModel().criteria();
            model = ModelZoo.loadModel(criteria);
            predictor = model.newPredictor();
            imageFactory = ImageFactory.getInstance();
        }catch (Exception e){
            e.printStackTrace();
        }
    }

    public static float[] featureExtraction(String url){
        float[] feature = null;
        try {
            log.info("开始获取图片");
            Image img = imageFactory.fromUrl("http://it.mz.gold"+url);
            log.info("获取图片结束");
            log.info("开始提取特征");
            feature = predictor.predict(img);
            ((Mat) img.getWrappedImage()).release();
            log.info("提取特征结束");
        }catch (Exception e){
            e.printStackTrace();
        }
        return feature;
    }
}

写好同步ES方法

public static void indexFeature(Fc_GoodsFeature goods){
        try {
            Es_GoodsFeature esGoodsFeature=new Es_GoodsFeature();
            esGoodsFeature.setGoods_id(goods.getGoods_id());
            esGoodsFeature.setFeature(goods.getFeature());
            esGoodsFeature.setGoods_name(goods.getGoods_name());
            indexFeature(esGoodsFeature,0);
        } catch (Exception e) {
            e.printStackTrace();
            log.error("添加到ES异常:"+ goods);
        }
    }

    public static void indexFeature(Es_GoodsFeature esGoods,int retryNum){
        log.debug("索引到ES开始:"+esGoods.toString());
        try {
            //index_name为索引名称;type_name为类型名称,7.0及以上版本必须为_doc;doc_id为文档的id。
            IndexRequest indexRequest = new IndexRequest(esFeatureConfig.getIndex(), "_doc", esGoods.getGoods_id().toString()).source(JSON.toJSONString(esGoods), XContentType.JSON);
            // 同步执行,并使用自定义RequestOptions(COMMON_OPTIONS)。
            IndexResponse indexResponse = esFeatureClient.index(indexRequest, RequestOptions.DEFAULT);
        } catch (IOException e) {
            e.printStackTrace();
            log.error("添加到ES异常:"+esGoods.toString());
            retryNum++;
            if(retryNum<=2){
                log.info("重新同步ES数据{}:{}",retryNum,esGoods.toString());
                indexFeature(esGoods,retryNum);
            }
        }
        log.debug("索引到ES结束:"+esGoods.toString());
    }

同步图片特征到ES

		String coverImg = "图片地址";
        if(coverImg.contains("https")){
            coverImg =  coverImg.substring(coverImg.indexOf("/data"));
        }
        float[] feature = ImageUtil.featureExtraction(coverImg);//提取图片特征
        if(feature == null) return;
        Fc_GoodsFeature goodsFeature=new Fc_GoodsFeature();
        goodsFeature.setGoods_id(goods.getGoods_id());
        goodsFeature.setFeature(feature);
        goodsFeature.setGoods_name(goods.getGoods_name());
        EsPriceService.indexFeature(goodsFeature);//讲图片特征同步到ES

搜索图片

并发量越大占用的内存越大,不超过并发量上限就不会增加内存

//定义锁 不然图片提取会占用太多内存与CPU
public static ReentrantLock imgLock = new ReentrantLock();
//初始换ES链接
public static void EsFeatureInit(EsFeatureConfig esFeaCon) {
        try {
            log.info("ES初始化开始...");
            esFeatureConfig=esFeaCon;
            //初始化ES
            // 阿里云Elasticsearch集群需要basic auth验证。
            final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
            //访问用户名和密码为您创建阿里云Elasticsearch实例时设置的用户名和密码,也是Kibana控制台的登录用户名和密码。
            credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(esFeatureConfig.getUsername(), esFeatureConfig.getPassword()));

            // 通过builder创建rest client,配置http client的HttpClientConfigCallback。
            // 单击所创建的Elasticsearch实例ID,在基本信息页面获取公网地址,即为ES集群地址。
            RestClientBuilder restClientBuilder = RestClient.builder(new HttpHost(esFeatureConfig.getHost(), esFeatureConfig.getPort()))
                    .setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
                        @Override
                        public HttpAsyncClientBuilder customizeHttpClient(HttpAsyncClientBuilder httpClientBuilder) {
                            return httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
                        }
                    });
            esClient=new RestHighLevelClient(restClientBuilder);
            searchRequest = new SearchRequest(esFeatureConfig.getIndex());
            searchSourceBuilder = new SearchSourceBuilder();

            log.info("ES初始化完毕!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

	//搜索接口
    @GetMapping("ImgSearch")
    public String ImgSearch(String msg){
        String str = "111";
        String imgUrl = "图片地址";
        try{
            imgLock.lock();
            float[] feature = ImageUtil.featureExtraction(imgUrl);//提取搜索的图片特征
            imgLock.unlock();

            //拼接ES查询语句
            String hnswQuery = "{\n" +
                    "    \"hnsw\": {  \n" +
                    "      \"feature\": {\n" +
                    "        \"vector\": " + Arrays.toString(feature) + ", \n" +
                    "        \"size\": 10 \n" +
                    "      }\n" +
                    "    }\n" +
                    "  }";
            queryBuilder = QueryBuilders.wrapperQuery(hnswQuery);
            searchSourceBuilder.query(queryBuilder)
                    .fetchSource(new String[]{"goods_id","goods_name"},null);//指定返回的字段
//                    .minScore(0.9f);//匹配度
            searchRequest.source(searchSourceBuilder);
            log.info("开始ES搜索");
            searchResponse = esClient.search(searchRequest, RequestOptions.DEFAULT);
            log.info("ES搜索结束");
            hits = searchResponse.getHits();
            hit =  hits.getAt(0);
            str = hit.getId();
            log.info("id: "+hit.getId()+" 商品名:"+hit.getSourceAsMap().get("goods_name")+" 相似度:"+hit.getScore());
//            for (SearchHit hit : hits){
//                System.out.println("id: "+hit.getId()+" 商品名:"+hit.getSourceAsMap().get("goods_name")+" 相似度:"+hit.getScore());
//            }
        }catch (Exception e){
            if(imgLock.isLocked()){
                imgLock.unlock();
            }
            return e.toString();
        }
        return str;
    }

总结

记录到这了。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值