- 博客(78)
- 收藏
- 关注
原创 通过 Dockerfile 搭建标注工具 brat 的镜像
通过 Dockerfile 搭建 brat 的镜像资源将会在项目 gitee 链接 开放。brat docker 上传 dockerhub 还没做。tar 包# 其实本来可以在 Dockerfile 里面下载解压的,但是容易有网络问题,索性提前下载 COPY 到镜像中wget -c -t 0 https://github.com/nlplab/brat/archive/refs/tags/v1.3p1.tar.gzdockerfile# 对于需要输入交互命令的安装,可以 echo
2022-03-24 20:09:49 1426
原创 Mac 11 + Typora + Picgo-core + Gitee 配置自动图片上传
Typora 是个很方便的编辑器,但是插入图片的时候默认是本地,不方便迁移分享。如果插入的图片能够自动“上云”,也就是给图片一个公网可查询的链接,那么 markdown 文档迁移分享就不怕丢失图片了。为了网络等方便,我选 Gitee,其他云仓库也是一样的道理。Gitee 中需要建立一个公开的仓库,来接收你每次插入的图片。Picgo 是个让 pic go go 的工具,它能够在插入图片的时候自动将图片传到你的云仓库中,但是需要配置一下。因为 Mac 英文版不支持 Picgo app,所以我用的 Picg.
2022-03-08 18:41:45 775
原创 elasticsearch 入门要了解哪些细节?
挂载 es 的 config 文件/usr/share/elasticsearch/config必须挂载出来,才方便自定义配置,建议使用 es 挂载 data应该绑定挂载 /usr/share/elasticsearch/data,原因如下:如果 docker 容器损坏或丢失,es 的数据得以保留。es 对 IO 操作很敏感,而 docker 的存储驱动不太适应高 IO。es 挂载文件必须为可读首先配置文件 config 下必须为可读,若还要挂载其他的文件,也必须可读,所以 docker
2022-02-15 18:44:31 1144
原创 Docker 部署 elasticsearch + kibana + 分词器(版本7.7.0)
Docker 部署 elasticsearch + kibana + 分词器考虑到版本不能过低/过高,且需要搭配使用,所以采用 7.7.0 版本,若采用别的版本应注意各处版本号细节。相关官方链接:es 7.7 文档docker 部署 es 7.7 文档docker 部署 kibana 7.7 文档elasticsearch jiebaelasticsearch_ik自说自话好像 es 和 kibana 都可以设置账户,后面可以考虑,本篇目前未提及。es第一步当然需要先安装 es,
2022-02-11 21:12:11 1993 1
原创 只是想在 Mac 上用 wget
写在前面最开始只是想在 Mac 上用 wget 方便下载东西,无奈得特意安装。所以先装了 homebrew 再装 wget。按道理来讲,homebrew 本身非常方便,无奈墙人所难。所以需要用镜像安装和配置 homebrew,再安装 wget 就很方便了。安装 homebrew原本命令超级简单,但是下载不下来呢……所以需要镜像,这样就很方便了。/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
2022-01-13 11:56:19 851
原创 Mac 本地以 docker 方式配置 neo4j
写在前面本篇主要记录在 Mac 本地上以 docker 形式部署 neo4j,整体来讲并不复杂,docker 相关东西不再赘述。首先需要 neo4j 的镜像# docker hub 有现成的 neo4j 镜像,就用官方的第一个,拉取到本地即可。(base) NanaLvs-MacBook-Pro:~ lvxiaodan$ docker search neo4jNAME DESCRIPTION
2021-12-22 20:14:22 2104
原创 Mac 配置 docker 基本操作
写在前面自己在 Mac 上配置 docker 和熟悉基本操作的过程中,参考教程资料会遇到和我实际情况略有不一的地方,所以做个记录方便理解和查看。Docker 在 ubuntu win mac 上 UI 等略有不同或者它们本身也在变化,进一步对比参考资料可以解决。过程中主要参考了菜鸟教程的 docker 教程DockerDocker 的很多介绍不再说了,有镜像和容器的概念,一定程度上可以将“容器”理解为是“镜像”的实例。本篇中基本都是 shell 里面的,为了注释方便我就用的 # 做注释。我最初为了
2021-12-22 10:32:07 3547
原创 TIA(Text Image Augmentation) + LtA(Learn to Augmentation):文本图像扩增工具 + 学习生成更有效的训练样本
全篇都是个人看法。首页左上角图标可以再大一点,现在有一些拘谨。所有解决 “xx” 的短语和句子读起来都觉得“戛然而止”。不仅一处,不再枚举。所有类似两行文字介绍读起来都不舒服,乍一看不知道怎么断句,加号也很突兀。不仅一处,不再枚举。此条不确定是不是我自己页面的问题。点击“院外患者管理”跳转时,不会正好跳转到新页面对应的位置,还需要滚动一下才能看到对应介绍(如下图)。其他“智慧互联网医院”等同理。仅从文字上看,有两个“翼心产品”,到底概念上哪个是“翼心产品”?最下面 2
2021-09-24 22:56:08 1005
原创 感人至深的 DB:帮助 probability map 更好地学习(training)却在功成之后(inference)退隐
class Solution: def countPaths(self, n: int, roads: List[List[int]]) -> int: # 建立查询字典 dic = {} for r in roads: s, e, d = r if s > e: s, e = e, s if s not in dic: dic[s]..
2021-08-21 23:59:12 1068
原创 和二叉树相伴的美好时光~@labuladong Day6 - BST 再来一遍
文章目录写在前面二叉树思考学习记录Day6 二叉搜索树加强Day6 [练习](https://alidocs.dingtalk.com/document/edit?dentryKey=pL1EBnNeZHeD4WbO#%20%E3%80%8C%E7%AC%AC%E5%85%AD%E5%A4%A9%E4%BD%9C%E4%B8%9A%E3%80%8D)二叉搜索树的范围和验证二叉搜索树修剪二叉搜索树二叉搜索树迭代器二叉搜索树中第K小的元素前序遍历构造二叉搜索树写在前面本篇全部集中在二叉树相关问题上,是参考东
2021-08-16 22:22:01 188
原创 和二叉树相伴的美好时光~@labuladong Day4 - 构造
hi,这是第四天的课程作业,鼓励大家主动思考,在作业文档多总结输出自己的笔记和疑惑,我会亲自批改大家的作业,对作业内容进行点评,能够展示出思考过程的作业会被评为优秀作业哦。写在前面本篇全部集中在二叉树相关问题上,是参考东哥的思路进行的练习和思考。东哥有《labuladong 的算法小抄》以及宝藏微信公众号 labuladong,github 也有项目,自来水推荐购买和关注。二叉树思考学习记录Day4 二叉树的构造所有的迭代操作都可以改用递归形式来写;本篇重点围绕使用递归的方式、借助之前遍历二叉
2021-08-12 23:07:30 253
原创 和二叉树相伴的美好时光~@labuladong Day3 -迭代
写在前面本篇全部集中在二叉树相关问题上,是参考东哥的思路进行的练习和思考。东哥有《labuladong 的算法小抄》以及宝藏微信公众号 labuladong,github 也有项目,自来水推荐购买和关注。二叉树思考学习记录Day3 二叉树迭代相关~本篇聊的迭代有两方面的意思:遍历二叉树不再使用递归函数的形式,而是使用迭代来遍历,不变的“遍历”,迭代和递归只是为了进行“遍历”的手段而已。意义不大,只是卷起来了哈哈哈O(∩_∩)O~比较吃对栈的理解和操作。对应 bfs 的思想,bfs 和 dfs
2021-08-11 22:47:53 208
原创 和二叉树相伴的美好时光~@labuladong Day2 - 递归
写在前面本篇全部集中在二叉树相关问题上,是参考东哥的思路进行的练习和思考。东哥有《labuladong 的算法小抄》以及宝藏微信公众号 labuladong,github 也有项目,自来水推荐购买和关注。二叉树思考学习记录Day2 拆分问题的递归思维今天是递归本归~重要的事情念 3 遍:结构相同,规模更小;结构相同,规模更小;结构相同,规模更小。之所以说今天是递归本归,是因为重点想强调对问题的拆分,化整为零、分治、通过小问题求解大问题的思想,而不是“自己调用自己”的表象。Day1 的内容
2021-08-11 11:14:46 315
原创 和二叉树相伴的美好时光~@labuladong Day1 - 遍历
二叉树思考学习记录Day1 有关二叉树的前序中序后序遍历二叉树的遍历本身就仅仅是递归而已,无论是否有前序中序后序,这个递归都在那里,做它自己的事情。前序中序后序遍历只是在递归过程不同的时间点做操作而已,如下图。如果你想要通过遍历二叉树来寻求某些问题的解,需要想明白两个问题:你要对当前节点做什么操作?你要在什么时刻做这个操作?二叉树相关的算法可以分为两大类:通过遍历二叉树解决,就要想好上面的两个问题。比如回溯就是在遍历一棵树,在进入节点前做选择(前序遍历的位置),在离开节点后撤销选择(后
2021-08-10 12:55:12 475
原创 详解 TensorFlow TFLite 移动端(安卓)部署物体检测 demo(3)——训练模型
详解 TensorFlow TFLite 移动端(安卓)部署物体检测 demo(3)——替换数据集训练 ssd mobilenet v2
2021-06-30 16:04:45 2017
原创 关于 tflite 移动端部署中如何为 tflite 模型添加 metadata
https://www.tensorflow.org/lite/convert/metadataTensorFlow Lite metadata provides a standard for model descriptions.The metadata is an important source of knowledge about what the modeldoes and its input / output information. The metadata consists of b
2021-06-30 16:00:42 2859 29
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人