Floyd算法三重循环理解

最短路Floyd算法三重循环的顺序:
for(int k=0; k<=n; ++k)
for(int i=0; i<=n; ++i)
for(int j=0; j<=n; ++j)
map[i][j] = min{ map[i][j], map[i][k]+map[k][j]};

Floyd算法本质上是DP,即对于每个(可能的)新增的节点k,来更新(可能的)节点i到j的最短距离。
为什么 新增节点 k 的循环要放在最外层呢?
这是由其算法本身所决定的,其每一步求出任意一对顶点之间仅通过中间节点1,2,…,k的最短距离,当1,2,…,k扩展到所有顶点时,算法解出任意一对顶点间的最短距离,故顺序自然是:

for(k=1;k<n;++k)
    //枚举任意一对顶点

我们可以举个例子;
共有四个节点
map[1][4] = 1;
map[4][2]= 3 ; map[4][3] = 1; map[3][2] = 1;
其他不通,设为无限大;
如果我们按k循环在最内层来计算,
那么1,2节点的最短路径为
min( map[1][2], map[1][3]+map[3][1],map[1][4]+map[4][2]) = 4;

而且之后不再更新1,2节点的最短距,
然而实际上min(map[1][2]) = map[1][4]+map[4][3]+map[3][2] = 3;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值