【个人理解】计算for三层嵌套循环的时间复杂度

m=0

for(i=1;i<=N;i++)

    for(j=1;j<=i;j++)

        for(k=1;k<=j;k++)

            m++;

求时间复杂度

 

时间复杂度等于m的被执行的次数:

i=1时,m被执行一次:

i=2时,m被执行1+3=4次:

 

i=3时, m被执行1+3+6=10次 :

可以观察到,第i次循环次数是一个有规律的数列: 1, 3, 6, 10,... ... 

设数列a_n,其中  a_1=1,\;a_2=3,\;a_3=6,

那么观察可得,

\\a_1=1\\a_2=3=1+2=a_1+2\\a_3=6=1+2+3=a_2+3\\...,

\\a_n=a_{n-1}+n\\=a_{n-2}+(n-1)+n\\=a_{n-2}+(n-1)+n\\=...\\=a_1+2+3+...+(n-1)+n\\=1+2+3+...+(n-1)+n\\=\frac{n(n+1)}{2};

也就得到了第i次循环的通项公式a_n=\frac{n(n+1)}{2}.

i=n时,m++执行 \frac{n(n+1)}{2}次:(图片中sum公式有误,具体请看下方推导)

知道了第n次循环m的执行次数,再全部加起来就能知道总的次数,也就是求数列a_n的前n项和:

又因为a_{n-1}=\frac{(n-1)(n-1+1)}{2}=\frac{n^2}{2}-\frac{n}{2};

所以数列an前n-1项和

\\S_{n-1}=\frac{1}{2}(1^2+2^2+3^2+...+n^2)-\frac{1}{2}(1+2+3+...+n) \\=\frac{1}{2}\frac{n(n+1)(2n+1)}{6}-\frac{(n+1)}{2} \\=\frac{n(n^2-1)}{6} \\=\frac{n^3-n}{6}.

把(n-1)换成n,也就是数列a_n前n项和S_{n}=\frac{(n+1)^3-(n+1)}{6};

即m++的执行次数也是S_{n}=\frac{(n+1)^3-(n+1)}{6}.

代入数据,验证正确.

最后,可以看出n的最高次幂为n^3,因此三重循环的时间复杂度是O(n^3).

 

 

 

 

<think>嗯,用户让我介绍一下时间复杂度计算。我需要先理清楚思路,确保自己理解正确,然后一步步解释清楚。首先,我应该从基本概念入手,什么是时间复杂度,为什么它重要。然后介绍大O符号,这是最常用的表示方法。接着,可能需要分步骤讲解如何计算,比如找出基本操作、确定输入规模、计算执行次数,最后简化为大O表示。还要注意常见的例子,比如循环结构、嵌套循环,不同情况下的复杂度差异。可能用户是刚开始学习算法,所以需要例子来辅助理解,避免太抽象。另外,用户可能想知道最坏情况、平均情况这些概念的区别。有没有可能用户混淆了时间复杂度和实际执行时间?需要澄清一下,时间复杂度是增长趋势,而不是具体的执行时间。还要检查有没有常见的错误,比如忽略系数和低阶项,或者错误地简化表达式。最后,总结一下步骤,帮助用户记忆。应该用简单的中文,结构清晰,分点说明,配合例子。比如,单层循环是O(n),双层嵌套是O(n²),分治算法像二分法是O(log n)。可能需要提到递归的时间复杂度,比如斐波那契的递归是O(2^n),但这可能稍复杂,根据用户的理解程度决定是否深入。总之,确保内容准确,逻辑连贯,例子贴切,让用户能够逐步掌握计算方法。</think>时间复杂度计算是算法分析的核心内容,主要用于衡量算法运行时间随输入规模增长的变化趋势。以下是逐步讲解: --- ### 一、基本概念 1. **时间复杂度**:描述算法执行时间与输入规模(n)之间的关系,用大O符号(O)表示。 2. **核心思想**:忽略低阶项和常数系数,只保留最高阶项(例如 $O(n^2)$)。 --- ### 二、计算步骤 #### 步骤1:确定基本操作 找到算法中执行次数最多的操作(如循环中的比较、赋值等)。 **示例**: ```python for i in range(n): # 循环内的打印是基本操作 print(i) ``` #### 步骤2:计算执行次数 统计基本操作的执行次数,用关于n的表达式表示。 **示例**: - 单层循环:执行n次 → $T(n) = n$ - 双层嵌套循环:执行$n \times n = n^2$次 → $T(n) = n^2$ #### 步骤3:简化为大O表示 保留最高阶项,去掉系数和低阶项: - 若 $T(n) = 3n^2 + 2n + 1$ → $O(n^2)$ - 若 $T(n) = 5n + 10$ → $O(n)$ --- ### 三、常见复杂度类型 1. **常数时间**:$O(1)$ ```python x = 10 + 20 # 无循环,操作次数固定 ``` 2. **线性时间**:$O(n)$ ```python for i in range(n): # 单层循环 print(i) ``` 3. **平方时间**:$O(n^2)$ ```python for i in range(n): # 双层嵌套循环 for j in range(n): print(i, j) ``` 4. **对数时间**:$O(\log n)$ ```python while n > 1: # 二分法、折半查找 n = n // 2 ``` 5. **线性对数时间**:$O(n \log n)$ 典型应用:快速排序、归并排序。 --- ### 四、递归算法的时间复杂度 通过递推公式分析,例如: - **斐波那契数列(递归)**: $$T(n) = T(n-1) + T(n-2) + O(1)$$ 时间复杂度为 $O(2^n)$(指数级)。 - **二分法(递归)**: $$T(n) = T(n/2) + O(1)$$ 时间复杂度为 $O(\log n)$。 --- ### 五、注意事项 1. **最坏情况 vs 平均情况** - 快速排序的最坏复杂度是$O(n^2)$,平均复杂度是$O(n \log n)$。 2. **空间换时间** 哈希表通过额外空间实现$O(1)$的查询复杂度。 3. **实际应用** 时间复杂度不直接等于实际运行时间,但能反映算法 scalability(扩展性)。 --- ### 六、总结 通过分析基本操作的执行次数,逐步简化为大O表达式,可快速评估算法效率。实际应用中需结合数据规模选择合适的复杂度类型。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值