数据结构(java)二、有序数组的二分查找

public class BinarySearch { 
        /** 
        * 二分查找算法 
        * 
        * @param srcArray 有序数组 
        * @param key 查找元素 
        * @return key的数组下标,没找到返回-1 
        */  
        public static void main(String[] args) { 
            int srcArray[] = {3,5,11,17,21,23,28,30,32,50,64,78,81,95,101};   
            System.out.println(binSearch(srcArray, 0, srcArray.length - 1, 81));  
        } 

        // 二分查找递归实现   
        public static int binSearch(int srcArray[], int start, int end, int key) {   
            int mid = (end - start) / 2 + start;   
            if (srcArray[mid] == key) {   
                return mid;   
            }   
            if (start >= end) {   
                return -1;   
            } else if (key > srcArray[mid]) {   
                return binSearch(srcArray, mid + 1, end, key);   
            } else if (key < srcArray[mid]) {   
                return binSearch(srcArray, start, mid - 1, key);   
            }   
            return -1;   
        } 

        // 二分查找普通循环实现   
        public static int binSearch(int srcArray[], int key) {   
            int mid = srcArray.length / 2;   
            if (key == srcArray[mid]) {   
                return mid;   
            }   

            int start = 0;   
            int end = srcArray.length - 1;   
            while (start <= end) {   
                mid = (end - start) / 2 + start;   
                if (key < srcArray[mid]) {   
                   end = mid - 1;   
                } else if (key > srcArray[mid]) {   
                    start = mid + 1;   
                } else {   
                    return mid;   
                }   
            }   
            return -1;   
        } 
    }

上面代码为java源码

重点注意

数组必须是有序数组,如果数组中存在相同数据,查询结果只是其中一个。

 

大O表示法

O(1)级时间算法是最好的,O(logN)次之,O(N)为一般,O(N平方)最差

时间复杂度

采用的是分治策略

最坏的情况下两种方式时间复杂度一样:O(log2 N)
最好情况下为O(1)
空间复杂度

算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数

非递归方式:
由于辅助空间是常数级别的所以:
空间复杂度是O(1);

递归方式:

 递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:
 空间复杂度:O(log2N )

此处引用博文:https://blog.csdn.net/maoyuanming0806/article/details/78176957

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值