1、Customized convolutional neural network model for IoT botnet attack detection (为物联网僵尸网络攻击检测定制的卷积神经网络模型 )
全文总结:这篇论文探讨了物联网中的网络安全问题,并提出了一个定制化的卷积神经网络模型(CCNN)用于检测IoT僵尸网络攻击。该模型包括四个阶段:特征提取、攻击检测、缓解和预处理。为了改善类不平衡问题,使用增强合成少数类过采样方法对输入数据进行预处理。特征集包括基于流量和原始属性的特征以及统计特征等。在攻击检测阶段,CCNN模型根据输入数据中提取的特征提供检测或分类输出。此外,还提出了一种基于熵的缓解过程,可以定位攻击者节点并帮助从网络中删除易受攻击的IoT节点。实验结果表明,提出的CCNN模型具有更高的特异性(97.09%),比传统技术如CNN、RNN、RF、SVM和DNN等具有更好的性能。
- 文章研究背景和要解决的问题挑战
这篇文章的研究背景是随着物联网技术的发展,物联网设备的数量急剧增加,这也带来了许多网络安全威胁。其中一种威胁就是物联网僵尸网络攻击(IoT botnet attack),这种攻击利用了物联网设备中的漏洞来控制大量的设备,并且可以对这些设备进行远程操控来进行各种恶意行为。然而,目前对于物联网僵尸网络攻击的检测方法还存在一些挑战,例如如何快速准确地识别攻击节点以及如何及时有效地进行防御等。因此,本文旨在提出一种定制化的卷积神经网络模型,用于解决物联网僵尸网络攻击检测中的一些问题和挑战。
该研究解决了物联网中存在的安全威胁,特别是针对IoT节点的攻击。通过提高检测性能和减少过拟合风险,该模型可以更准确地识别恶意行为,并使用熵基缓解策略有效地去除攻击者节点。这些改进有助于保护物联网的安全性和稳定性。
- 具体实现
本文提出了一种定制的卷积神经网络(CCNN)模型,用于物联网(IoT)僵尸网络攻击的检测。该模型包含四个阶段:特征提取、攻击检测、缓解和预处理。以下是各个阶段的关键方法论和公式:
1. 预处理(Pre-processing via SMOTE-ENC)
预处理阶段使用增强的合成少数过采样技术(SMOTE-ENC)来解决输入数据集中的类别不平衡问题。SMOTE-ENC方法依赖于KNN算法,并在计算连续变量和分类变量之间的距离时,为分类属性标签之间的变化分配一个固定值。
2. 特征提取(Feature extraction)
特征提取阶段从预处理后的数据集中提取多种特征,包括统计特征(均值、中位数、标准差、改进的熵)、互信息(MI)和基于流的特征。提取的特征集合表示为 ( F )。
3. CCNN基于攻击检测模型(CCNN-based attack detection model)
攻击检测过程基于提取的特征集 ( F )。模型包括输入层、卷积层、最大池化层、修改的注意力层和全连接层。
3.1 输入层(Input layer)
提取的特征集 ( F ) 作为输入。
3.2 卷积层(Convolution layer)
卷积层通过滤波器或核改变输入特征,执行点积操作以创建特征图。卷积操作的公式为:
M
(
i
,
j
)
=
(
F
∗
K
)
(
i
,
j
)
=
∑
∑
F
(
i
+
m
,
j
+
n
)
K
(
m
,
n
)
M(i, j) = (F * K)(i, j) = \sum \sum F(i + m, j + n)K(m, n)
M(i,j)=(F∗K)(i,j)=∑∑F(i+m,j+n)K(m,n)
3.3 最大池化层(Max pooling layer)
池化层用于降低特征图的空间维度,通过最大值技术合并同一滤波器或图中附近神经元的输出。最大池化层的输出是一个缩小的特征图。
3.4 修改的注意力层(Modified attention layer)
注意力机制允许网络一次关注复杂输入的特定属性,直到整个数据集被分类。改进的注意力机制包括计算信息增益(IG),并使用它来选择有用的信息特征集
F
+
I
F
F + IF
F+IF。信息增益的计算公式为:
I
G
=
H
(
S
)
−
H
(
S
∣
a
)
IG = H(S) - H(S|a)
IG=H(S)−H(S∣a)
其中
H
(
S
)
H(S)
H(S) 表示数据集
S
S
S 的熵,
H
(
S
∣
a
)
H(S|a)
H(S∣a) 表示给定变量
a
a
a 时
S
S
S 的条件熵。
3.5 全连接层(Fully connected layer)
全连接层将前面层的每个输入连接到所有神经元,计算输出类别的概率。最终分类输出为:
f
(
s
)
=
1
m
[
(
tanh
)
+
(
m
−
1
)
(
tanh
)
]
f(s) = \frac{1}{m[(\tanh) + (m-1)(\tanh)]}
f(s)=m[(tanh)+(m−1)(tanh)]1
其中
tanh
\tanh
tanh 是双曲正切函数。
4. 缓解(Mitigation)
检测后,需要缓解过程从网络中移除攻击者节点。本文提出了一种基于熵的缓解方法,通过计算每个节点的熵值
E
t
p
Etp
Etp 来识别攻击者和非攻击者节点:
E
t
p
=
−
∑
i
=
1
N
p
i
log
p
i
+
C
r
Etp = -\sum_{i=1}^{N} p_i \log p_i + Cr
Etp=−i=1∑Npilogpi+Cr
其中
C
r
Cr
Cr 是相关系数,
p
i
p_i
pi 是节点行为的概率。
通过这些阶段和关键公式,本文的CCNN模型能够有效地检测和缓解IoT僵尸网络攻击。
- 实验设计
本文介绍了作者对CCNN(卷积神经网络)在IoT(物联网)-botnet攻击检测中的应用进行了实验研究,并与传统算法进行了比较。实验包括三个不同的数据集的评估和统计分析。以下是每个实验的详细介绍:
实验目的:比较CCNN和其他传统算法在准确度、特异性、FPR、MCC、准确性等性能指标上的表现,以确定CCNN是否能够更好地检测IoT-botnet攻击。
数据集描述:第一个数据集包含了69.3GB的pcap文件和16.7GB的CSV格式的数据流记录,其中包含了DDoS、DoS、OS和服务扫描、键盘记录和数据外泄攻击等。第二个数据集使用了9个IoT设备的训练数据,用于捕捉标准网络流量模式。第三个数据集是BoT-IoT数据集,包括了正常和botnet流量的混合。
结果:在所有实验中,CCNN都取得了比其他传统算法更高的准确率。例如,在第一个数据集中,CCNN的准确率为97.53%,而CNN为87.46%,NB为94.50%,SVM为84.17%,RNN为86.76%,RF为90.14%,NN为94.50%,DNN为92.32%,SMIE为87.51%。此外,CCNN还通过改进类不平衡处理和特征提取等方式提高了系统检测IoT-botnet攻击的能力。
比较实验:本文还对CCNN与其他传统方法进行了比较,包括RNN、NB、DNN、DBN、RF、CNN、NN和Smote等。结果表明,CCNN在所有实验中都取得了最小的错误率,并且计算时间也更短。
综上所述,本文的实验研究表明,CCNN是一种有效的IoT-botnet攻击检测方法,具有较高的准确率和更快的计算速度。
- 总结
值得精读 基于熵值进行定位的内容
该研究针对物联网(IoT)中存在严重的网络攻击问题,提出了一种基于卷积神经网络(CNN)的定制化模型来检测和消除IoT Botnet攻击。该研究的主要优点包括以下几点:
- 采用了改进的SMOTE-ENC算法来处理输入数据中的类别不平衡问题,提高了分类器的准确性。
- 利用多种特征提取技术,如统计特征、流基特征等,有效地提取了网络流量的关键信息,并将其作为CNN模型的输入。
- 通过熵值计算的方法,在发现攻击后能够快速定位攻击者节点和非攻击者节点,从而实现及时的攻击清除。
- 与其他传统方法相比,该定制化CNN模型在准确性和效率方面均表现出色,具有较高的可扩展性和实用性。
- 局限性
该研究为IoT Botnet攻击的检测和清除提供了一个有效的解决方案,但仍有一些限制需要在未来的研究中加以改进。例如,该模型仅适用于SDN框架下的IoT系统,对于其他场景的应用仍需进一步探索。此外,该研究还可以将这种方法应用于虚拟计算机的数据中心,以提高其保护水平。因此,未来的研究可以进一步探讨这些方向,以完善该模型并提高其应用范围和效果。
2、A Performance Evaluation of Neural Networks for Botnet Detection in the Internet of Things(物联网中神经网络用于检测僵尸网络的性能评估 )
全文总结:这篇论文探讨了物联网中使用神经网络检测僵尸网络的问题。作者比较了八种不同的神经网络架构在BoT-IoT和N-BaIoT数据集上的性能,并测量了模型的准确率、精度和召回率以及训练过程中的损失。此外,他们还评估了模型在典型边缘设备(如NVIDIA Jetson Nano)上的吞吐量,并研究了量化对模型准确性的影响。结果表明,在超参数调整后,许多BoT-IoT模型的准确率超过99%,而大多数N-BaIoT模型的准确率超过80%。然而,吞吐量结果显示,表现最好的模型可能无法在由大量物联网设备组成的环境中扩展,即使考虑到8位量化的影响。
- 文章研究背景和要解决的问题挑战
这篇文章的研究背景是物联网设备数量庞大且计算资源有限,因此成为僵尸网络攻击的理想目标。同时,由于不同研究采用不同的预处理方法、算法和超参数,并考虑不同的评价指标,因此很难比较不同的解决方案。该文章旨在比较八种神经网络架构在BoT-IoT和N-BaIoT数据集上的性能表现,这两个数据集包含有标签的物联网网络流量和僵尸网络攻击。文章还探讨了模型训练过程中的损失情况以及在边缘环境中实现模型的吞吐量并评估量化对模型精度的影响。
- 具体实现
该研究使用了两个包含botnet流量的数据集(BoT-IoT和N-BaIoT)来创建和评估分类模型。其中,BoT-IoT数据集通过模拟物联网环境使用虚拟机(VMs)构建,并包含了天气站、智能冰箱、运动感应灯、远程激活车库门以及智能恒温器等五个模拟物联网设备。而N-BaIoT数据集则使用了来自九个商业物联网设备的真实网络流量数据,这些设备被感染了两种最常见的基于IoT的botnet:Mirai和BASH-LITE。该研究还介绍了神经网络的基本概念及其类型,包括多层感知器(MLP)、循环神经网络(RNN)和长短期记忆(LSTM),并列举了用于测试的几种不同架构。
该研究采用了不同的机器学习技术,如支持向量机(SVM)、长短时记忆网络(LSTM)和递归神经网络(RNN),以评估所提出的数据集的可靠性。同时,他们也根据实验结果进行了进一步的优化,例如减少了BoT-IoT数据集中记录的所有特征数量,并提供了只包含最相关特征的子集版本。
该研究的主要目标是利用神经网络和多种数据集来检测和识别物联网中的恶意流量。通过使用BoT-IoT和N-BaIoT数据集,研究人员能够评估不同的神经网络架构在识别各种攻击类别和子类别的性能表现。他们的研究有助于提高网络安全性和保护物联网设备免受恶意攻击的影响。
- 实验设计
本文介绍了对两个不同的物联网攻击数据集(BoT-IoT和N-BaIoT)的多个神经网络模型进行性能分析的过程。在测试环境和预处理方面,使用了Argus监控系统来提取特征,并使用SMOTE算法平衡数据集。然后,使用Adam优化器和交叉验证方法训练每个模型,并使用准确率、精确度和召回率等指标评估其性能。最后,通过网格搜索法调整超参数并比较不同模型的表现。
在BoT-IoT数据集上,所有模型都表现良好,准确率超过93%,其中一些模型甚至超过了98%。经过调优后,发现增加训练轮数可以提高模型性能,而学习率为5e-4或1e-4的模型比默认的学习率1e-3表现更好。对于N-BaIoT数据集,由于该数据集中的攻击类型更多且更难以分类,因此模型表现较差。然而,在这个数据集中,基于RNN和LSTM的模型表现更好。
在实验结果中,BoT-IoT数据集上的模型在检测DoS和DDoS攻击方面的表现不如其他类别,而在检测合法流量和其他类别的攻击方面的表现较好。而N-BaIoT数据集上的模型则很难正确分类某些攻击类型,如BASHLITE的TCP和UDP洪水攻击以及Mirai的ACK和UDP洪水攻击。经过调优后,大多数模型在训练时使用的轮数较少,这表明N-BaIoT数据集更容易受到过拟合的影响。
此外,本文还研究了模型的处理吞吐量和量化对模型精度的影响。实验结果显示,不同架构的模型在处理速度方面差异较大,但平均处理速度都在227.07到1,058.65个样本/秒之间。虽然这些模型足以应对少量的物联网设备,但在处理大量设备或高网络消耗设备的情况下可能无法扩展。量化技术可以用于减少模型大小并提高处理吞吐量,但可能会损害模型分类准确性。本文还展示了8位量化对模型精度的影响较小,仅影响了4个模型的精度。
- 总结
该论文针对物联网环境中的网络安全问题,通过构建多个神经网络模型并对其性能进行了评估和比较。作者使用了两个公开数据集BoT-IoT和N-BaIoT,并采用了相同的预处理方法和超参数调整策略来确保结果的可比性。此外,论文还介绍了量化技术在提高模型性能方面的应用,并探讨了不同的量化方法对模型性能的影响。这些研究为开发高效且准确的物联网安全解决方案提供了有价值的参考。
- 局限性
尽管本文的研究结果表明,在特定环境下,神经网络模型可以有效地检测物联网网络中的攻击行为,但仍然存在一些挑战需要解决。例如,如何在保证模型准确性的同时,使模型能够在低功耗设备上实时运行。此外,还需要进一步探索其他机器学习算法在物联网安全领域的应用,以及如何结合多模态信息来提高模型的鲁棒性和泛化能力。总之,随着物联网的发展,网络安全问题变得越来越重要,因此,需要不断探索新的技术和方法来保护物联网的安全
3、Decision Tree-Based IoT Botnet Attack Detection(基于决策树的物联网僵尸网络攻击检测 )
全文总结:本篇论文探讨了利用决策树模型预测物联网僵尸网络攻击的能力,并通过减少变量数量的方式提高预测准确率。作者使用了三种决策树模型(C5、CHAID和Random Forest)以及两种额外的模型(逻辑回归和支持向量机)进行比较。实验结果表明,CHAID和C5模型在预测物联网僵尸网络攻击方面表现最好,因为它们只使用了四个和两个变量。这些结果表明,使用较少变量的决策树模型可以比使用所有预测变量的模型表现更好。
- 会议论文比较简单简短(略)
4、Cross Device Federated Intrusion Detector for Early Stage Botnet Propagation in IoT (跨设备联合入侵检测器用于物联网中的早期阶段僵尸网络传播 )
全文总结:这篇论文探讨了物联网中恶意软件传播的问题,并提出了一个跨设备联邦入侵检测机制。该机制可以在不泄露用户隐私的情况下对网络流量进行监测和预测异常行为。作者使用了一个真实的MedBIoT数据集进行了实验评估,结果显示该方法具有较高的准确率、精确度和召回率。此外,作者还考虑了设备参与联邦学习时可能遭受的攻击问题。
- 文章研究背景和要解决的问题挑战
文章的研究背景和要解决的问题挑战如下:
研究背景
-
网络安全威胁增加:随着技术进步,特别是物联网(IoT)设备的广泛使用,网络安全风险日益增加。据文章引用的数据,65%的商业领袖在2019年感到他们的网络安全风险在增加,恶意软件攻击的平均成本达到260万美元[1]。同时,IoT设备由于配置薄弱或存在常见漏洞,成为主要的感染目标[1]。
-
传统检测方法的局限性:传统的基于机器学习(ML)的入侵检测系统(IDS)需要捕获原始数据并发送到ML处理器以检测入侵,这在隐私保护方面存在挑战。防火墙、IDS和IPS等技术需要分析原始网络流量数据,这可能会引起隐私问题,尤其是在涉及多个设备和数据孤岛的情况下[1]。
-
隐私保护需求:随着隐私保护意识的提升,需要一种既能保护数据隐私又能独立学习的技术。Federated learning(联合学习)作为一种新兴的机器学习方法,可以在保护隐私的同时进行模型训练[1]。
要解决的问题挑战
-
Botnet传播检测困难:文章指出,监测网络流量以检测botnet传播是困难的,因为它们很容易与常规网络流量混合。因此,需要一种新的方法来检测IoT中botnet的早期传播阶段[1]。
-
数据隐私保护:如何在不共享客户端数据的情况下,实现跨设备的数据学习与模型更新,是一个重要的挑战。文章提出的跨设备联合入侵检测机制,旨在确保客户端数据不与任何第三方共享,从而终止隐私泄露[1]。
-
模型性能与安全性:文章还考察了参与联合学习的设备是否可能对整体系统进行投毒攻击,以及这种攻击对模型性能的影响。投毒攻击是指敌手注入不良数据以降低或阻碍模型性能的情况[1]。
文章的研究背景聚焦于IoT设备中botnet传播的早期检测,以及如何在保护数据隐私的同时提高检测系统的准确性和鲁棒性。要解决的主要挑战包括提高检测准确性、保护用户隐私以及增强模型对投毒攻击的抵抗力。[1]
- 具体实现
本文提出了一个基于跨设备联邦学习(Cross-device Federated Learning)的入侵检测系统(IDS),旨在检测并防止早期阶段的恶意网络流量。该系统包括以下几个组件:
- 联邦IDS:使用联邦学习来区分正常和异常网络数据。
- 设备:IDS连接到多个设备,并在本地训练模型后将模型权重反馈给IDS,而无需共享数据。
- 网络路由器:允许设备连接到互联网。
通过使用联邦学习,该系统可以保护数据隐私,因为所有数据都保留在本地设备上,只有模型权重被更新和调整,然后发送回IDS。该系统专注于区分“正常”和“异常”流量,以帮助IDS更准确地识别恶意网络流量
本文的主要创新点在于引入了联邦学习技术,从而提高了系统的数据隐私性和效率。同时,通过对网络数据包的分析,该系统能够更早地检测到恶意网络流量的存在,有助于提高防御能力。
此外,该系统还针对数据不平衡问题进行了处理,使得每个客户端在训练时都能处理不同比例的数据,提高了系统的鲁棒性和适应性。
- 实验设计
本文介绍了多个对比实验的结果,包括模型训练和测试的对比实验以及攻击实验。在模型训练和测试的对比实验中,作者使用了不同的超参数(如客户端数量、批大小、迭代次数和学习率)来比较不同设置下的模型性能,并记录了每个实验的准确度、精确度、召回率和F1分数等评估指标。在攻击实验中,作者通过标签翻转攻击来改变模型的预测结果,并记录了攻击后模型的准确度、精确度、召回率和F1分数等评估指标。
具体来说,在模型训练和测试的对比实验中,作者首先尝试了两个不同的超参数组合(即客户端数量为4,批大小为64,迭代次数为200和400),并比较了这两个组合下模型在不同学习率下的表现。结果显示,无论是在训练还是测试阶段,这两种组合的表现差异不大,因此后续实验均采用了客户端数量为4,批大小为64,迭代次数为200的学习率设置。然后,作者进行了十个随机实验,以了解模型的整体表现。结果显示,平均准确率为69%,平均精确度为78%,平均召回率为69%,平均F1分数为66%。此外,作者还对这些实验的数据进行了可视化分析,以便更好地理解模型的行为。
在攻击实验中,作者将第一个客户端中的所有源端口等于23的行的标签从1改为0,模拟了一种常见的攻击方式——标签翻转攻击。作者进行了十个随机实验,以了解攻击后的模型表现。结果显示,攻击后模型的平均准确率为71%,平均精确度为78%,平均召回率为71%,平均F1分数为68%。与未受攻击时相比,攻击后的模型在某些情况下表现更好,但在其他情况下则更差。此外,攻击后的模型在测试集上的表现也更加不稳定,存在更多的波动。
综上所述,本文介绍了多个对比实验的结果,包括模型训练和测试的对比实验以及攻击实验。这些实验提供了有关联邦学习模型性能的重要信息,有助于改进和优化联邦学习算法。
- 总结
值得精读
本文提出了一种基于联邦学习的入侵检测系统,旨在保护设备之间的数据隐私。该系统通过对合法botnet流量的原始包数据进行分析,并在线模型区分恶意和良性流量,从而实现每包级别的入侵检测。同时,文章还研究了针对该系统的毒化攻击对模型性能的影响。实验结果表明,该方法具有较高的准确率(71%)、精确度(78%)、召回率(71%)和F1分数(68%)。此外,文章还提出了将该系统应用于硬件系统以进行测试的目的。
- 局限性
未来,可以考虑进一步优化模型性能,并将其应用于更广泛的网络环境中。还可以探索其他类型的攻击并扩展跨设备联邦学习的应用范围,也可以研究如何在保护隐私的前提下更好地利用数据共享来提高模型的准确性和效率。
5、Intelligent botnet detection in IoT networks using parallel CNN-LSTM fusion (基于并行CNN-LSTM融合的物联网网络智能僵尸网络检测 )
全文总结:随着物联网的发展,终端设备数量迅速增长,但同时也面临着严重的安全挑战。工业控制系统在检测和预防botnet方面面临困难。传统的检测方法需要先捕获并反向分析botnet程序,然后解析恶意代码或攻击提取的特征,准确率低且延迟高。机器学习的检测方法依赖于手动特征工程,泛化能力弱。而基于深度学习的方法大多依赖于系统日志,没有考虑多源信息如流量等。本文提出了一个智能检测方法,通过平行CNN-LSTM融合整合空间和时间特征识别botnet。实验表明,该方法的准确率、召回率和F1分数均达到98%以上,精度为97.8%,优于现有方法。该方法的优势在于能够利用物联网流量中存在的多维信息,提供更细致和全面的分析。平行CNN-LSTM架构确保同时处理空间和时间数据,保留信息完整性,实现更强大的检测机制。因此,这种检测系统不仅在受控环境中表现优异,而且有望应用于现实世界中,快速准确地识别botnet。关键词:botnet、深度学习、恶意流量检测、平行CNN-LSTM、流量截断。
- 文章研究背景和要解决的问题挑战
-
物联网(IoT)设备数量的快速增长及其安全性挑战:
随着物联网技术的发展,终端设备数量迅速增加,这些设备的安全性面临着严重挑战。特别是在工业控制系统中,检测和预防僵尸网络(botnet)成为一个难题。 -
传统检测方法的局限性:
传统的僵尸网络检测方法主要侧重于动态/静态分析僵尸程序,这些方法的准确度低,延迟高,有时甚至无法识别未知的僵尸网络。 -
基于机器学习的检测方法的局限性:
基于机器学习的检测方法依赖于人工特征工程,泛化能力弱。 -
基于深度学习的检测方法的局限性:
基于深度学习的检测方法大多依赖于系统日志,没有考虑到流量等多源信息。这些方法通常是从单一维度出发,需要进一步改进。 -
未知僵尸网络的识别挑战:
随着僵尸网络的不断更新,如何正确识别和检测僵尸网络,尤其是潜在的未知僵尸网络,成为学术界和工业界面临的主要挑战。
- 具体实现
本文提出的方法论是基于并行卷积神经网络(CNN)和长短期记忆网络(LSTM)融合的智能僵尸网络检测方法。以下是详细的方法论说明,结合了关键公式和搜索结果中的相关信息:
数据预处理:
- 将原始流量数据转换为适合深度学习模型训练的格式。这包括将PCAP格式的流量文件分割成基于会话的数据,并将其转换为灰度图像。
并行CNN-LSTM模型设计:
- CNN部分:利用CNN模型有效地提取流量数据的空间特征。CNN通过卷积层、激活函数(如ReLU)、池化层来提取特征,并使用批量归一化(Batch Normalization)来调整分布,加速模型收敛并防止过拟合。
- LSTM部分:LSTM模型用于捕捉流量数据的时间特征。LSTM能够处理序列数据,通过门控机制(包括输入门、遗忘门和输出门)来控制信息的流动,从而捕捉长期依赖关系。
模型融合:
- 并行融合:与串联融合(其中一个模型的输出作为另一个模型的输入)不同,本文提出的并行CNN-LSTM模型允许CNN和LSTM从原始数据中独立学习特征,然后将这些特征进行融合。这种结构可以更充分地利用原始数据,避免信息丢失。
关键公式:
- 卷积层输出尺寸计算公式:[O = \frac{H + 2P - K}{S} + 1],其中(O)是输出矩阵的大小,(H)是输入矩阵的大小,(P)是填充大小,(K)是卷积核大小,(S)是步长。
- LSTM的输出和隐藏状态更新公式,其中(\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t)),确保了(\mathbf{H}_t)的值始终在区间(-1, 1)内,(\odot)表示哈达玛积(逐元素乘积)。
- 实验设计
本文主要介绍了基于平行卷积神经网络和长短时记忆网络的恶意软件检测方法,并通过多个对比实验来验证该方法的有效性。
首先,在实验数据方面,作者使用了混合流量数据集,其中包括由IoT仿真平台生成的攻击流量以及来自Czech Polytechnic University公共IoT数据集的两个部分。在实验过程中,作者随机选择了60,000个数据样本,并将其分为训练集、验证集和测试集,比例为3:1:1。
接下来,作者介绍了实验的具体步骤,包括预处理数据、使用训练集和验证集训练模型并观察变化、使用测试集测试模型并计算评价指标等。同时,作者还介绍了所使用的激活函数、分类器和优化算法等细节信息。
然后,作者重点介绍了如何选择最优的交通截断长度。通过对不同长度的数据进行实验,作者发现当截断长度为576字节时,模型的准确率、召回率和F1分数最高,而精度排名第二。因此,作者将截断长度设置为576字节。
最后,作者进行了Ablation研究,比较了CNN模型、LSTM模型、串行CNN-LSTM模型和并行CNN-LSTM模型与提出的方法的效果。结果表明,提出的并行CNN-LSTM方法具有最高的准确率、召回率和F1分数,其精度排名第二。与其他现有方法相比,提出的并行CNN-LSTM方法具有更好的检测性能。
综上所述,本文通过多个对比实验验证了基于平行卷积神经网络和长短时记忆网络的恶意软件检测方法的有效性,并提供了详细的实验设计和分析过程。
- 总结
值得精读 转图片的方法部分
该论文提出了一种基于深度学习技术的交通流量智能检测方法,能够有效地识别工业控制系统中的僵尸网络攻击。该方法具有以下优点:
- 对于传统的静态和动态分析方法,其准确性和实时性存在局限性,而本文提出的深度学习方法能够自动提取复杂非线性的隐藏特征,从而提高了检测的准确性和泛化能力。
- 通过将网络流量转换为灰度图像,并使用神经网络进行训练,该方法可以处理多种类型的攻击行为,包括分布式拒绝服务(DDoS)等。
- 在实验中,作者采用了IoT仿真平台来收集数据,并进行了数据预处理和模型优化,使得模型在测试集上的表现非常优秀。
- 局限性
尽管该论文提出的方法已经取得了很好的效果,但仍然有一些改进的空间。例如,可以通过进一步优化模型结构和减少计算资源消耗来提高模型的效率;同时,还可以探索将该方法应用于更广泛的网络安全场景中,以提供更强的安全保护。因此,该研究还有很大的发展空间,值得继续深入探究。
6、BotNet-Inspired HTTP-Based DDoS Attack Prevention Using Supervised Machine Learning Algorithms in Internet of Things Devices (基于物联网设备的受监督机器学习算法,使用HTTP基础DDoS攻击预防方法 )
全文总结:本研究旨在利用机器学习算法防止物联网环境中的HTTP基础DDoS攻击。通过使用BoT-IoT数据集和特征缩放、标准化等方法对数据进行处理,并采用决策树模型进行分类预测。实验结果表明,决策树模型在维度降低后具有最高的准确率(99.96%)、R2(0.9979)、MAE(0.0003)、MSE(0.0003)、RMSE(0.0195)、精度(1.0)和召回率(0.9994),是预防HTTP基础DDoS攻击的最佳模型。此外,该研究建议进一步使用其他性能评估指标如Matthew Correlation Coefficient(MCC)、Kappa Statistic和Huber损失避免模型选择上的偏见和主观性。同时,可以考虑使用深度学习方法来预防云环境下的HTTP基础DDoS攻击。
- 文章研究背景和要解决的问题挑战
这篇文章的研究背景是DDoS攻击已经成为互联网上最严重的风险之一,对企业和政府造成了巨大的损失。因此,研究人员需要寻找一种有效的方法来防止这种类型的攻击。该文章提出了一种基于物联网设备的受监督机器学习算法,用于预防HTTP基础DDoS攻击。该算法利用了BoT-IoT数据集,并通过特征缩放和标准化等技术进行了预处理。然后,研究人员比较了几种不同的机器学习模型,并发现决策树是最有效的模型,可以达到99.96%的准确率。然而,为了进一步提高模型的性能,研究人员建议使用其他评估指标和技术,如Matthew Correlation Coefficient(MCC)、Kappa Statistic和Huber loss。此外,深度学习方法也可以应用于云环境中的DDoS攻击预防。
- 具体实现
该论文提出了一个用于防止HTTP基于DDoS攻击的IoT设备模型。研究使用了BOT-IoT数据集,并对其进行了预处理以消除无关的数据点、处理缺失值并检测和纠正异常值。然后,使用标准化和归一化技术来减少偏差,并将字符字段转换为数字值以便于机器学习模型分类。最后,通过降维技术(PCA)提取特征,将高维数据转化为低维数据。
该论文采用了多种数据预处理技术和机器学习算法来提高模型性能。其中,数据清洗和处理缺失值等操作可以确保数据的质量;标准化和归一化技术可以降低数据偏倚;降维技术可以简化数据结构,提高模型效率。
该论文旨在开发一种针对HTTP基于DDoS攻击的IoT设备防御模型,以提高网络安全性。该模型可以有效地识别和阻止恶意流量,从而保护IoT设备免受DDoS攻击的影响。同时,该模型还可以帮助网络管理员更好地监控和管理网络流量,及时发现和应对潜在的安全威胁。
- 实验设计
本文进行了多个机器学习技术的比较实验,包括逻辑回归(LR)、支持向量机(SVM)、梯度提升(GB)、决策树(DT)和朴素贝叶斯(NB)。在实验中,数据集被标准化并使用主成分分析(PCA)进行了降维处理。
在没有进行降维之前,DT、GB、SVM和LR的准确率分别为99.96%、99.02%、75.91%和90.79%。其他指标结果如表I所示。图6显示了DT、GB、SVM和LR的准确率图形表示,而图7则显示了R2分数、MAE、MSE、RMSE、精度、召回率和F1分数的结果。
在进行降维之后,DT、GB、SVM和LR的准确率分别为99.96%、99.94%、98.98%和99.09%。其他指标结果如表II所示。图8显示了DT、GB、SVM和LR的准确率图形表示,而图9则显示了R2分数、MAE、MSE、RMSE、精度、召回率和F1分数的结果。
从实验结果可以看出,在进行降维之前,DT和GB的准确率最高,而SVM的准确率最低。但是,在进行降维之后,SVM的准确率有了显著提高,并且与DT和GB的准确率相当接近。这表明降维可以有效地提高模型的性能。此外,DT和GB的精度、召回率和F1分数都比SVM高,说明它们是更好的选择。最后,通过降低维度,可以减少数据的复杂性,从而提高模型的效率和准确性。
- 总结
值得精读 写作手法
论文提出了一种基于决策树模型的HTTP基于DOS攻击预防策略。
实验结果表明,该模型具有较高的准确性和有效性。
对于其他性能评估指标,如Mathew Correlation Coefficient(MCC)和Kappa Statistic等,可以进一步研究以避免主观选择最佳模型的情况。
- 局限性
可以进一步探索其他性能评估指标,例如Matthew Correlation Coefficient(MCC)和Kappa Statistic等,以避免主观选择最佳模型的情况。
可以尝试将更多的机器学习算法应用于防止HTTP基于DOS攻击的研究中,以找到更有效的解决方案。
可以通过改进数据预处理技术和增加特征数量等方式进一步提高模型的准确性。