K-means聚类算法

K-means算法是一种非监督学习的聚类方法,用于将数据分为紧密结合的类。算法包括随机初始化簇中心,然后不断迭代,将每个数据点分配给最近的簇中心,并更新簇中心至该簇所有点的均值,直至收敛。由于J函数的非凸性,可能导致局部最优解,可通过多次运行并选取最小J值的结果来缓解此问题。
摘要由CSDN通过智能技术生成

K-means聚类算法
在聚集问题中,我们给定一个训练集 { x(1),...,x(m)} ,并且想把这些数据聚集到一些紧密结合的”类”。这里,通常 x(i)R ,但是对应的 y(i) 没有给定。所以这是一个非监督学习问题。
K-means聚集算法的步骤如下:
1.随机初始化簇中心 μ1,μ2,...,μ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值