K-means聚类算法
在聚集问题中,我们给定一个训练集 {
x(1),...,x(m)} ,并且想把这些数据聚集到一些紧密结合的”类”。这里,通常 x(i)∈R ,但是对应的 y(i) 没有给定。所以这是一个非监督学习问题。
K-means聚集算法的步骤如下:
1.随机初始化簇中心 μ1,μ2,...,μ
K-means聚类算法
最新推荐文章于 2023-01-02 21:51:30 发布
K-means算法是一种非监督学习的聚类方法,用于将数据分为紧密结合的类。算法包括随机初始化簇中心,然后不断迭代,将每个数据点分配给最近的簇中心,并更新簇中心至该簇所有点的均值,直至收敛。由于J函数的非凸性,可能导致局部最优解,可通过多次运行并选取最小J值的结果来缓解此问题。
摘要由CSDN通过智能技术生成