labelImg的安装和使用

使用yolo等框架做目标检测都会需要一些图像标注的工具,这里详细介绍一下labeling的安装和简单的使用。

1、安装

1.从labeling 的github下载该文件,下图。github链接:https://github.com/tzutalin/labelImg

2.解压到随便一个盘下或者桌面。开始配置环境, 这里有两种方法环境配置:

第一使用Anocanda,在Anocanda环境下安装lxml和pyqt。我们如果安装了Anocanda,在自己windows上找出并点击下图中的Anocanda Prompt,进入环境,输入conda list 查看自己是否配置了lxml和pyqt,见下图3。

以大图2
图3

从图4可以看到,我是安装好了lxml和pyqt,并且我的pyqt版本是5.6.0,如果没有安装的,可以使用下面指令安装:

conda install lxml

 conda install pyqt=5

图4

 

 以上就是环境配置,这时候我们不要关闭指令页面,下面要开始讲如何使用。

2、使用

环境配置成功后,Anocanda Prompt命令页cd到labelImg-master文件夹下,下图。

输入下面指令安装资源:

pyrcc5 -o resources.py resources.qrc

如果环境安装的pyqt的版本是4点多版本的话,将 pyrcc5 改成pyrcc4即可。输入下面指令就可以打开了。

python labelImg.py 

在以后再次使用只需输入:python labelImg.py  

3、软件使用

软件的使用直接看下图,尝试摸索一下哦。

 

### LabelImg安装使用 #### 安装方法 LabelImg 是一款用于图像标注的开源工具,支持矩形框标注以及 Pascal VOC YOLO 数据集格式导出。以下是基于 Python 环境下的两种常见安装方式。 1. **通过 pip 工具安装** 可以利用国内镜像源加速安装过程。执行以下命令完成安装[^2]: ```bash pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple labelImg ``` 2. **通过 Anaconda 环境安装** 如果您正在使用 Anaconda,则可以通过创建虚拟环境并安装依赖项来简化配置流程。Anaconda 不仅提供 LabelImg 本身,还包含了其运行所需的 Qt 库其他必要组件[^1]。具体操作如下: 创建一个新的 Conda 虚拟环境(可选): ```bash conda create -n labelimg_env python=3.8 conda activate labelimg_env ``` 接着克隆官方仓库并按照说明构建项目: ```bash git clone https://github.com/tzutalin/labelImg.git cd labelImg make qt5py3 ``` #### 使用方法 启动程序后,界面主要分为以下几个部分: - 文件加载区:点击 `Open Dir` 打开目标图片所在的文件夹;或者单击 `Change Save Dir` 设置保存路径。 - 图片浏览栏:显示当前目录下所有待处理的照片缩略图列表。 - 标签编辑器:输入类别名称到文本框内,并按回车键确认新增标签选项。 - 绘制边界框:左键拖拽鼠标绘制包围物体的兴趣区域 (ROI),随后双击该 ROI 或者右键修改属性即可关联对应的分类标签。 当一切准备就绪之后,可以选择合适的输出格式进行数据序列化存储,默认支持 XML 形式的 VOC 标准以及 TXT 文本形式的 YOLO 风格描述文件生成。 ```python from labelme import utils as lu # 示例代码片段展示如何转换 JSON 到其他格式 json_file = 'example.json' with open(json_file, encoding='utf-8') as f: data = json.load(f) image_data = lu.img_b64_to_arr(data['imageData']) shape_list = [{'points': shape['points'], 'label': shape['label']} for shape in data['shapes']] lbl, _ = lu.shapes_to_label(image_data.shape[:2], shape_list, {'cat': 1}) utils.lblsave('output.png', lbl) ``` 上述脚本演示了借助 `labelme` 模块读取自定义标注结果,并将其转化为像素级掩码的过程。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值