第N9周:Transformer实战-单词预测

一、课题背景和开发环境

📌第N9周:Transformer实战-单词预测📌

  • Python 3.8.12
  • numpy==1.21.5 -> 1.24.3
  • pytorch==1.8.1+cu111

📌本周任务:📌

  • 自定义输入一段英文文本进行预测(拓展内容,可自由发挥)

Transformer

二、代码实现

这是一个关于使用 Transformer 模型来预测文本序列中下一个单词的教程示例。

1.关于数据集

本文使用的是Wikitext-2数据集,WikiText 英语词库数据(The WikiText Long Term Dependency Language Modeling Dataset)是一个包含1亿个词汇的英文词库数据,这些词汇是从Wikipedia的优质文章和标杆文章中提取得到,包括 WikiText-2WikiText-103 两个版本,相比于著名的 Penn Treebank (PTB) 词库中的词汇数量,前者是其2倍,后者是其110倍。每个词汇还同时保留产生该词汇的原始文章,这尤其适合当需要长时依赖(longterm dependency)自然语言建模的场景。

以下是关于Wikitext-2数据集的一些详细介绍:

  1. 数据来源:Wikitext-2数据集是从维基百科抽取的,包含了维基百科中的文章文本。
  2. 数据内容:Wikitext-2数据集包含维基百科的文章内容,包括各种主题和领域的信息。这些文章是经过预处理和清洗的,以提供干净和可用于训练的文本数据。
  3. 数据规模:Wikitext-2数据集的规模相对较小。它包含了超过2,088,628个词标记(token)的文本,以及其中1,915,997个词标记用于训练,172,430个词标记用于验证和186,716个词标记用于测试。
  4. 数据格式:Wikitext-2数据集以纯文本形式进行存储,每个文本文件包含一个维基百科文章的内容。文本以段落和句子为单位进行分割。
  5. 用途:Wikitext-2数据集通常用于语言建模任务,其中模型的目标是根据之前的上下文来预测下一个词或下一个句子。此外,该数据集也可以用于其他文本生成任务,如机器翻译、摘要生成等。

2.定义模型

class PositionalEncoding(nn.Module):
    def __init__(self,
                 d_model: int,
                 dropout: float = 0.1,
                 max_len: int = 5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        # 生成位置编码的位置张量
        position = torch.arange(max_len).unsqueeze(1)
        # 计算位置编码的除数项
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        # 创建位置编码张量
        pe = torch.zeros(max_len, 1, d_model)
        # 使用正弦函数计算位置编码中的奇数维度部分
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        # 使用余弦函数计算位置编码中的偶数维度部分
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)
    
    def forward(self, x: Tensor) -> Tensor:
        """
        Arguments:
            x: Tensor, 形状为 [seq_len, batch_size, embedding_dim]
        """
        # 将位置编码添加到输入张量
        x = x + self.pe[:x.size(0)]
        # 应用 dropout
        return self.dropout(x)


class Transformer(nn.Module):
	def __init__(
			self,
			ntoken: int,
            d_model: int,
            nhead: int,
            d_hid: int,
            nlayers: int,
            dropout: float = 0.5):
		super(Transformer, self).__init__()
		self.model_type  = 'Transformer'
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        # 定义编码器层
        encoder_layers = TransformerEncoderLayer(d_model, nhead, d_hid, dropout)
        # 定义编码器,pytorch将Transformer编码器进行了打包
        self.encoder = TransformerEncoder(encoder_layers, nlayers)
        self.embedding = nn.Embedding(ntoken, d_model)
        self.d_model = d_model
        self.linear = nn.Linear(d_model, ntoken)
    
    # 初始化权重
    def init_weights(self) -> None:
        initrange = 0.1
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.linear.bias.data.zero_()
        self.linear.weight.data.uniform_(-initrange, initrange)
    
	def forward(self, src: Tensor, mask: Tensor = None) -> Tensor:
		"""
        Arguments:
            src : Tensor, 形状为 [seq_len, batch_size]
            mask: Tensor, 形状为 [seq_len, seq_len]
        Returns:
            输出的 Tensor, 形状为 [seq_len, batch_size, ntoken]
        """
        src = self.embedding(src) * math.sqrt(self.d_model)
        src = self.pos_encoder(src)
        output = self.encoder(src, mask)
        output = self.linear(output)
		return output

3.加载数据集

安装 portalockerportalocker

pip install portalocker
pip install torchdata

这里因为我使用的torch版本和 @K同学啊 提供的例程版本不一致,其中的build_vocab_from_iterator接口实现不能通用,所以略作了修改。

bptt = 35
# 设置GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 从torchtext库中导入WikiText2数据集
train_iter = WikiText2(split='train')
# 获取基本英语的分词器
tokenizer = get_tokenizer('basic_english')
#### 通过迭代器构建词汇表
###vocab = build_vocab_from_iterator(map(tokenizer, train_iter), specials=['<unk>'])
#### 将默认索引设置为'<unk>'
###vocab.set_default_index(vocab['<unk>'])
counter = Counter()
for line in train_iter:
    #print('Line :', line, 'END.')
    counter.update(tokenizer(line))
    #print('Token :', tokenizer(line), 'END.')
vocab = Vocab(counter, min_freq=1)


def data_process(raw_text_iter: dataset.IterableDataset) -> Tensor:
    """将原始文本转换为扁平的张量"""
    data = []
    for item in raw_text_iter:
        tokens = tokenizer(item)
        data.append(torch.tensor([vocab[token] for token in tokens], dtype=torch.long))
    return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))


def batchify(data: Tensor, bsz: int) -> Tensor:
    """将数据划分为 bsz 个单独的序列,去除不能完全容纳的额外元素。
    Arguments:
        data: Tensor, 形状为``[N]``
        bsz : int, 批大小
    Returns:
        形状为 [N // bsz, bsz] 的张量
    """
    seq_len = data.size(0) // bsz
    data    = data[:seq_len * bsz]
    data    = data.view(bsz, seq_len).t().contiguous()
    return data.to(device)


# 获取批次数据
def get_batch(source: Tensor, i: int) -> Tuple[Tensor, Tensor]:
    """
    Arguments:
        source: Tensor,形状为 ``[full_seq_len, batch_size]``
        i: int, 当前批次索引
    Returns:
        tuple (data, target),
        - data形状为 [seq_len, batch_size]
        - target形状为 [seq_len * batch_size]
    """
    # 计算当前批次的序列长度,最大为bptt,确保不超过source的长度
    seq_len = min(bptt, len(source) - 1 - i)
    # 获取data,从i开始,长度为seq_len
    data    = source[i:i+seq_len]
    # 获取target,从i+1开始,长度为seq_len,并将其形状转换为一维张量
    target  = source[i+1:i+1+seq_len].reshape(-1)
    return data, target


# 由于构建词汇表时"train_iter"被使用了,所以需要重新创建
train_iter, val_iter, test_iter = WikiText2()
# 对训练、验证和测试数据进行处理
train_data = data_process(train_iter)
val_data   = data_process(val_iter)
test_data  = data_process(test_iter)
# 设置批大小和评估批大小
batch_size = 20
eval_batch_size = 10
# 将训练、验证和测试数据进行批处理
train_data = batchify(train_data, batch_size)    # 形状为 [seq_len, batch_size]
val_data   = batchify(val_data, eval_batch_size)
test_data  = batchify(test_data, eval_batch_size)

4.初始化实例

ntokens = len(vocab)  # 词汇表的大小
emsize  = 200         # 嵌入维度
d_hid   = 200         # nn.TransformerEncoder 中前馈网络模型的维度
nlayers = 2           # nn.TransformerEncoder中的nn.TransformerEncoderLayer层数
nhead   = 2           # nn.MultiheadAttention 中的头数
dropout = 0.2         # 丢弃概率

# 创建 Transformer 模型,并将其移动到设备上
model = Transformer(ntokens, emsize, nhead, d_hid, nlayers, dropout).to(device)

5.训练模型

def train(model: nn.Module) -> None:
    model.train()  # 开启训练模式
    total_loss   = 0.
    log_interval = 200  # 每隔200个batch打印一次日志
    start_time   = time.time()
    
    num_batches = len(train_data) // bptt  # 计算总的batch数量
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i)  # 获取当前batch的数据和目标
        output        = model(data)               # 前向传播
        output_flat   = output.view(-1, ntokens)
        loss          = criterion(output_flat, targets)  # 计算损失
        
        optimizer.zero_grad()  # 梯度清零
        loss.backward()        # 反向传播计算梯度
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)  # 对梯度进行裁剪,防止梯度爆炸
        optimizer.step()       # 更新模型参数
        
        total_loss += loss.item()  # 累加损失值
        if batch % log_interval == 0 and batch > 0:
            lr = scheduler.get_last_lr()[0]  # 获取当前学习率
            # 计算每个batch的平均耗时
            ms_per_batch = (time.time() - start_time) * 1000 / log_interval
            cur_loss     = total_loss / log_interval  # 计算平均损失
            ppl          = math.exp(cur_loss)         # 计算困惑度
            # 打印日志信息
            print(f'| epoch {epoch:3d} | {batch:5d}/{num_batches:5d} batches | '
                  f'lr {lr:02.2f} | ms/batch {ms_per_batch:5.2f} | '
                  f'loss {cur_loss:5.2f} | ppl {ppl:8.2f}')
            total_loss = 0            # 重置损失值
            start_time = time.time()  # 重置起始时间


def evaluate(model: nn.Module, eval_data: Tensor) -> float:
    model.eval()  # 开启评估模式
    total_loss = 0.
    with torch.no_grad():
        for i in range(0, eval_data.size(0) - 1, bptt):
            data, targets = get_batch(eval_data, i)  # 获取当前batch的数据和目标
            seq_len       = data.size(0)             # 序列长度
            output        = model(data)              # 前向传播
            output_flat   = output.view(-1, ntokens)
            total_loss    += seq_len * criterion(output_flat, targets).item()  # 计算总损失
    return total_loss / (len(eval_data) - 1)  # 返回平均损失


criterion = nn.CrossEntropyLoss() # 定义交叉熵损失函数
lr        = 5.0  # 学习率
# 使用随机梯度下降(SGD)优化器,将模型参数传入优化器
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
# 使用学习率调度器,每隔1个epoch,将学习率按0.95的比例进行衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

best_val_loss = float('inf')  # 初始最佳验证损失为无穷大
epochs = 5  # 训练的总轮数

# 最佳模型参数的保存路径
best_model_params_path = os.path.join("output", "best_model_params.pt")
for epoch in range(1, epochs + 1):  # 遍历每个epoch
    epoch_start_time = time.time()  # 记录当前epoch开始的时间
    train(model)  # 进行模型训练
    val_loss = evaluate(model, val_data)  # 在验证集上评估模型性能,计算验证损失
    val_ppl = math.exp(val_loss)  # 计算困惑度
    elapsed = time.time() - epoch_start_time  # 计算当前epoch的耗时
    print('-' * 89)
    # 打印当前epoch的信息,包括耗时、验证损失和困惑度]
    print(f'| end of epoch {epoch:3d} | time: {elapsed:5.2f}s | '
          f'valid loss {val_loss:5.2f} | valid ppl {val_ppl:8.2f}')
    print('-' * 89)
    if val_loss < best_val_loss:  # 如果当前验证损失比最佳验证损失更低
        best_val_loss = val_loss  # 更新最佳验证损失
        # 保存当前模型参数为最佳模型参数
        torch.save(model.state_dict(), best_model_params_path)
    scheduler.step()  # 更新学习率
# 加载最佳模型参数,即加载在验证集上性能最好的模型
model.load_state_dict(torch.load(best_model_params_path))
| epoch   1 |   200/ 2928 batches | lr 5.00 | ms/batch 62.10 | loss  7.60 | ppl  1988.40
| epoch   1 |   400/ 2928 batches | lr 5.00 | ms/batch 17.75 | loss  6.91 | ppl   997.98
| epoch   1 |   600/ 2928 batches | lr 5.00 | ms/batch 17.86 | loss  6.54 | ppl   691.84
| epoch   1 |   800/ 2928 batches | lr 5.00 | ms/batch 18.23 | loss  6.42 | ppl   613.56
| epoch   1 |  1000/ 2928 batches | lr 5.00 | ms/batch 18.59 | loss  6.31 | ppl   550.96
| epoch   1 |  1200/ 2928 batches | lr 5.00 | ms/batch 18.00 | loss  6.29 | ppl   537.86
| epoch   1 |  1400/ 2928 batches | lr 5.00 | ms/batch 18.06 | loss  6.21 | ppl   497.04
| epoch   1 |  1600/ 2928 batches | lr 5.00 | ms/batch 18.06 | loss  6.19 | ppl   489.55
| epoch   1 |  1800/ 2928 batches | lr 5.00 | ms/batch 18.06 | loss  6.10 | ppl   447.05
| epoch   1 |  2000/ 2928 batches | lr 5.00 | ms/batch 18.04 | loss  6.10 | ppl   446.01
| epoch   1 |  2200/ 2928 batches | lr 5.00 | ms/batch 18.21 | loss  5.98 | ppl   395.55
| epoch   1 |  2400/ 2928 batches | lr 5.00 | ms/batch 18.09 | loss  6.04 | ppl   421.60
| epoch   1 |  2600/ 2928 batches | lr 5.00 | ms/batch 18.20 | loss  6.02 | ppl   412.97
| epoch   1 |  2800/ 2928 batches | lr 5.00 | ms/batch 18.37 | loss  5.95 | ppl   383.96
-----------------------------------------------------------------------------------------
| end of epoch   1 | time: 64.10s | valid loss  5.75 | valid ppl   313.27
-----------------------------------------------------------------------------------------
| epoch   2 |   200/ 2928 batches | lr 4.75 | ms/batch 19.12 | loss  5.91 | ppl   367.51
| epoch   2 |   400/ 2928 batches | lr 4.75 | ms/batch 19.36 | loss  5.90 | ppl   366.18
| epoch   2 |   600/ 2928 batches | lr 4.75 | ms/batch 19.06 | loss  5.76 | ppl   316.60
| epoch   2 |   800/ 2928 batches | lr 4.75 | ms/batch 19.39 | loss  5.79 | ppl   327.00
| epoch   2 |  1000/ 2928 batches | lr 4.75 | ms/batch 19.42 | loss  5.74 | ppl   312.08
| epoch   2 |  1200/ 2928 batches | lr 4.75 | ms/batch 19.42 | loss  5.78 | ppl   324.39
| epoch   2 |  1400/ 2928 batches | lr 4.75 | ms/batch 19.47 | loss  5.76 | ppl   318.24
| epoch   2 |  1600/ 2928 batches | lr 4.75 | ms/batch 19.52 | loss  5.79 | ppl   327.94
| epoch   2 |  1800/ 2928 batches | lr 4.75 | ms/batch 19.45 | loss  5.73 | ppl   307.91
| epoch   2 |  2000/ 2928 batches | lr 4.75 | ms/batch 19.48 | loss  5.74 | ppl   310.71
| epoch   2 |  2200/ 2928 batches | lr 4.75 | ms/batch 19.99 | loss  5.63 | ppl   279.15
| epoch   2 |  2400/ 2928 batches | lr 4.75 | ms/batch 19.93 | loss  5.72 | ppl   303.65
| epoch   2 |  2600/ 2928 batches | lr 4.75 | ms/batch 19.72 | loss  5.71 | ppl   302.62
| epoch   2 |  2800/ 2928 batches | lr 4.75 | ms/batch 19.75 | loss  5.65 | ppl   284.62
-----------------------------------------------------------------------------------------
| end of epoch   2 | time: 59.49s | valid loss  5.45 | valid ppl   233.57
-----------------------------------------------------------------------------------------
| epoch   3 |   200/ 2928 batches | lr 4.51 | ms/batch 20.16 | loss  5.64 | ppl   280.39
| epoch   3 |   400/ 2928 batches | lr 4.51 | ms/batch 19.53 | loss  5.66 | ppl   288.43
| epoch   3 |   600/ 2928 batches | lr 4.51 | ms/batch 34.44 | loss  5.51 | ppl   246.89
| epoch   3 |   800/ 2928 batches | lr 4.51 | ms/batch 74.36 | loss  5.56 | ppl   258.98
| epoch   3 |  1000/ 2928 batches | lr 4.51 | ms/batch 74.49 | loss  5.51 | ppl   247.44
| epoch   3 |  1200/ 2928 batches | lr 4.51 | ms/batch 74.49 | loss  5.54 | ppl   255.86
| epoch   3 |  1400/ 2928 batches | lr 4.51 | ms/batch 74.48 | loss  5.54 | ppl   255.24
| epoch   3 |  1600/ 2928 batches | lr 4.51 | ms/batch 74.50 | loss  5.58 | ppl   265.05
| epoch   3 |  1800/ 2928 batches | lr 4.51 | ms/batch 74.43 | loss  5.52 | ppl   250.01
| epoch   3 |  2000/ 2928 batches | lr 4.51 | ms/batch 74.42 | loss  5.53 | ppl   251.67
| epoch   3 |  2200/ 2928 batches | lr 4.51 | ms/batch 74.39 | loss  5.43 | ppl   227.35
| epoch   3 |  2400/ 2928 batches | lr 4.51 | ms/batch 74.41 | loss  5.52 | ppl   249.87
| epoch   3 |  2600/ 2928 batches | lr 4.51 | ms/batch 74.41 | loss  5.54 | ppl   254.04
| epoch   3 |  2800/ 2928 batches | lr 4.51 | ms/batch 74.41 | loss  5.45 | ppl   233.39
-----------------------------------------------------------------------------------------
| end of epoch   3 | time: 196.27s | valid loss  5.36 | valid ppl   212.73
-----------------------------------------------------------------------------------------
| epoch   4 |   200/ 2928 batches | lr 4.29 | ms/batch 74.89 | loss  5.45 | ppl   233.39
| epoch   4 |   400/ 2928 batches | lr 4.29 | ms/batch 74.41 | loss  5.50 | ppl   245.46
| epoch   4 |   600/ 2928 batches | lr 4.29 | ms/batch 74.53 | loss  5.32 | ppl   204.48
| epoch   4 |   800/ 2928 batches | lr 4.29 | ms/batch 74.91 | loss  5.38 | ppl   217.50
| epoch   4 |  1000/ 2928 batches | lr 4.29 | ms/batch 74.98 | loss  5.35 | ppl   211.26
| epoch   4 |  1200/ 2928 batches | lr 4.29 | ms/batch 74.90 | loss  5.40 | ppl   220.44
| epoch   4 |  1400/ 2928 batches | lr 4.29 | ms/batch 75.01 | loss  5.40 | ppl   220.32
| epoch   4 |  1600/ 2928 batches | lr 4.29 | ms/batch 75.13 | loss  5.44 | ppl   230.02
| epoch   4 |  1800/ 2928 batches | lr 4.29 | ms/batch 75.43 | loss  5.36 | ppl   213.09
| epoch   4 |  2000/ 2928 batches | lr 4.29 | ms/batch 75.58 | loss  5.39 | ppl   218.75
| epoch   4 |  2200/ 2928 batches | lr 4.29 | ms/batch 75.51 | loss  5.27 | ppl   194.47
| epoch   4 |  2400/ 2928 batches | lr 4.29 | ms/batch 75.47 | loss  5.37 | ppl   214.22
| epoch   4 |  2600/ 2928 batches | lr 4.29 | ms/batch 74.93 | loss  5.38 | ppl   216.47
| epoch   4 |  2800/ 2928 batches | lr 4.29 | ms/batch 75.28 | loss  5.31 | ppl   201.87
-----------------------------------------------------------------------------------------
| end of epoch   4 | time: 228.38s | valid loss  5.28 | valid ppl   197.28
-----------------------------------------------------------------------------------------
| epoch   5 |   200/ 2928 batches | lr 4.07 | ms/batch 75.21 | loss  5.32 | ppl   204.85
| epoch   5 |   400/ 2928 batches | lr 4.07 | ms/batch 75.07 | loss  5.36 | ppl   213.76
| epoch   5 |   600/ 2928 batches | lr 4.07 | ms/batch 75.41 | loss  5.18 | ppl   177.20
| epoch   5 |   800/ 2928 batches | lr 4.07 | ms/batch 75.38 | loss  5.24 | ppl   189.53
| epoch   5 |  1000/ 2928 batches | lr 4.07 | ms/batch 75.90 | loss  5.21 | ppl   182.96
| epoch   5 |  1200/ 2928 batches | lr 4.07 | ms/batch 75.93 | loss  5.25 | ppl   190.94
| epoch   5 |  1400/ 2928 batches | lr 4.07 | ms/batch 75.30 | loss  5.26 | ppl   191.79
| epoch   5 |  1600/ 2928 batches | lr 4.07 | ms/batch 75.06 | loss  5.31 | ppl   202.05
| epoch   5 |  1800/ 2928 batches | lr 4.07 | ms/batch 75.20 | loss  5.24 | ppl   189.07
| epoch   5 |  2000/ 2928 batches | lr 4.07 | ms/batch 75.20 | loss  5.26 | ppl   193.05
| epoch   5 |  2200/ 2928 batches | lr 4.07 | ms/batch 75.21 | loss  5.14 | ppl   170.77
| epoch   5 |  2400/ 2928 batches | lr 4.07 | ms/batch 75.02 | loss  5.23 | ppl   187.72
| epoch   5 |  2600/ 2928 batches | lr 4.07 | ms/batch 75.15 | loss  5.25 | ppl   189.99
| epoch   5 |  2800/ 2928 batches | lr 4.07 | ms/batch 75.12 | loss  5.17 | ppl   176.12
-----------------------------------------------------------------------------------------
| end of epoch   5 | time: 228.79s | valid loss  5.24 | valid ppl   188.86
-----------------------------------------------------------------------------------------

6.评估模型

test_loss = evaluate(model, test_data)
test_ppl = math.exp(test_loss)
print('=' * 89)
print(f'| End of training | test loss {test_loss:5.2f} | '
      f'test ppl {test_ppl:8.2f}')
print('=' * 89)
=========================================================================================
| End of training | test loss  5.15 | test ppl   171.82
=========================================================================================
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值