YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读

本文详细解读YOLOv5s.yaml文件,探讨深度学习模型YOLOv5s的参数配置、anchors设置、backbone和head结构,并指导如何调整模型以优化检测性能。开发环境为Python3、Pytorch 1.8.1,重点讨论depth_multiple和width_multiple参数以及anchor的工程实践。
摘要由CSDN通过智能技术生成

一、课题背景和开发环境

📌第Y3周:yolov5s.yaml文件解读📌

  • 语言:Python3、Pytorch
  • 📌本周任务:将yolov5s网络模型中第4层的C3*2修改为C3*1,第6层的C3*3修改我C3*2
  • 💫任务提示:仅需修改./models/yolov5s.yaml文件

YOLOv5配置了4种不同大小的网络模型,分别是YOLOv5sYOLOv5mYOLOv5lYOLOv5x,其中YOLOv5s是网络深度和宽度最小但检测速度最快的模型,其他3中模型都是在YOLOv5s的基础上不断加深、加宽网络使得网络规模扩大,在增强模型检测性能的同时增加了计算资源和速度消耗。出于对检测精度、模型大小、检测速度的综合考量,本文选择YOLOv5s作为研究对象进行介绍。
./models/yolov5s.yaml文件是YOLOv5s网络结构的定义文件,如果你想改进算法的网络结构,需先修改该文件中的相关参数,然后再修改./models/common.py./models/yolo.py中的相关代码。


开发环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.2
  • 编译器:无(直接在cmd.exe内运行)
  • 深度学习环境:Pytorch 1.8.1+cu111
  • 显卡及显存:NVIDIA GeForce GTX 1660 Ti 12G
  • CUDA版本:Release 10.2, V10.2.89(cmd输入nvcc -Vnvcc --version指令可查看)
  • YOLOv5开源地址:YOLOv5开源地址
  • 数据:🔗水果检测

YOLOv5s网络结构图
C3模块网络结构图

二、参数配置

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple    控制模型深度
width_multiple: 0.50  # layer channel multiple  控制COnv通道channel个数(卷积核数量)
  • depth_multiple:控制子模块数量, = int(number*depth),该参数与任务有关
  • width_multiple:控制卷积核的数量, = int(number*width)

通过这两个参数可以实现不同复杂度的模型设计。YOLOv5sYOLOv5mYOLOv5lYOLOv5x这四个模型的区别仅在于depth_multiplewidth_multiple这两个参数不同。


三、anchors配置

anchors:
  - [10,13, 16,30, 33,23]       # P3/8 ,检测小目标,每两个尺寸参数一组,共三组
  - [30,61, 62,45, 59,119]      # P4/16,检测中目标,共三组
  - [116,90, 156,198, 373,326]  # P5/32,检测大目标,共三组

目标3组:[10, 13], [16, 30], [33, 23]
目标3组:[30, 61], [62, 45], [59,119]
目标3组:[116,90], [156,198], [373,326]

YOLOv5初始化了9个anchor,在3个Detect层(3个feature map)中使用,每个feature map的每个grid_cell都有3个anchor进行预测。分配规则是:尺度越大的feature map越靠前,相对原图的下采样率越小,感受野越小,则相对可以预测一些尺度比较小的物体,所有分配到定anchor越小;尺度越小的feature map越靠后,相对原图的下采样率越大,感受野越大,则相对可以预测一些尺寸比较大的物体,所有分配到的anchor也越大。即可以在小特征图(feature map)上检测大目标,也可以在大特征图上检测小目标。
YOLOv5根据工程经验得到了这么3组anchors(9对尺寸参数),对于很多数据集而言已经很合适了。但也不能保证这3组anchor就适用于所有数据集,所以YOLOv5还有一个anchor进化的策略:使用k-means和遗传进化算法,找到与当前数据集最吻合的anchors。

k-means:对当前数据集中所有的标注信息中的目标框的尺寸做聚类,输出9对anchors的值。下面是我找到的一段聚类输出anchors的代码。

yolo_kmeans.py

import numpy as np


def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = np.minimum(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)


def k_means(boxes, k, dist=np.median):
    """
    yolo k-means methods
    refer: https://github.com/qqwweee/keras-yolo3/blob/master/kmeans.py
    Args:
        boxes: 需要聚类的bboxes
        k: 簇数(聚成几类)
        dist: 更新簇坐标的方法(默认使用中位数,比均值效果略好)
    """
    box_number = boxes.shape[0]
    last_nearest = np.zeros((box_number,))

    # 在所有的bboxes中随机挑选k个作为簇的中心。
    clusters 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值