http://poj.org/problem?id=1651
题意:给你一段数字序列,每次拿出来一个数(除了第一个和最后一个),然后ans+=这个数 * 左边的第一个数 * 右边的第一个数,取出除了第一个和最后一个之外的所有的数后,求最小的ans
这里只写了记忆化搜索的版本…. 其实只用加一个枚举中界的循环就OK了
dp[l][r]代表的是以l为第一个数,r为最后一个数的子序列得到的最小的ans
这里区间之间的关系只有一种 比如说: 1 2 3 4 5
dp[1][3]代表1~3 dp[3][5]代表3~5
这时我们要合并区间求出1~5的ans
dp[1][5]=dp[1][3]+dp[3][5]+1 * 3 * 5
因为区间dp[1][3]代表的是取完过后只剩1 3后的ans
dp[1][5]同理是 只剩1 5的ans
合并时 1 3 5 所以是1 * 3 * 5
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<map>
#include<set>
using namespace std;
#define rfor(i,a,b) for(i=a;i<=b;++i)
#define lfor(i,a,b) for(i=a;i>=b;--i)
#define sfor(i,a,h) for(i=h[a];i!=-1;i=e[i].next)
#define mem(a,b) memset(a,b,sizeof(a))
#define mec(a,b) memcpy(a,b,sizeof(b))
#define cheak(i) printf("%d ",i)
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b)
#define inf 0x3f3f3f3f
#define lowbit(x) (x&(-x))
typedef long long LL;
#define maxn 105
#define maxm maxn*maxn
#define lson(x) (splay[x].son[0])
#define rson(x) (splay[x].son[1])
LL A[maxn];
LL dp[maxn][maxn];
LL dfs(int l,int r)
{
if(r-l==2)
dp[l][r]=A[l]*A[r]*A[l+1];
if(dp[l][r]!=inf)
return dp[l][r];
int i;
rfor(i,l+1,r-1)
dp[l][r]=min(dp[l][r],dfs(l,i)+dfs(i,r)+A[l]*A[r]*A[i]);
return dp[l][r];
}
int main()
{
int i,j,n;
scanf("%d",&n);
rfor(i,1,n)
rfor(j,1,n) dp[i][j]=inf;
rfor(i,1,n-1) dp[i][i+1]=0;
rfor(i,1,n)
scanf("%lld",&A[i]);
printf("%lld\n",dfs(1,n));
return 0;
}