二叉排序树
定义:二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
算法思想:
查找:查找 k e y key key值,由二叉排序树的定义可以知道,在进行查找操作时,可以先与根节点比较,若比根节点的值小则再与左子树的根节点比较,若比根节点的值大则再与右子树的根节点比较,若与根节点的值相等则查找结束,从描述可以看出,这是一个典型的递归操作。
插入:插入 k e y key key值,先对于二叉排序树进行 k e y key key值的查找,若没有 k e y key key值再进行插入。对于插入操作,先确定 k e y key key值应该插入的位置,当然 k e y key key值插入进去后是成为二叉排序树的叶子节点。对于查找插入位置,可以设一个新变量 c u r r e n t current current来记录在搜寻合适位置时,当前的节点位置。
删除:删除操作是二叉排序树中相对而言最复杂的操作。删除 k e y key key值节点 T T T,先对于二叉排序树进行 k e y key key值查找,若存在 k e y key key值再进行删除。对于删除操作,一共有三种情况,若删除的节点 T T T是树中的叶子节点,则直接删除即可;若删除的节点 T T T有且仅有一个孩子节点,则直接将 T T T的双亲节点与 T T T的孩子节点连接即可;若节点