【机器学习实战】笔记二:决策树

要理解决策树算法需要首先明确信息增益及信息熵的概念:
对于一个分类集中的分类xi,其熵为
 l(xi)=log2p(xi)
对于所有类别的信息熵总和:
H=ni=1p(xi)log2p(xi)

计算香农熵的函数:

from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet) #类别个数
    labelCount = {}
    for featVec in dataSet: #对每一条数据
        currentLabel = featVec[-1] #currentLabel为当前数据的类别
        if currentLabel not in labelCount.keys(): #计数
            labelCount[currentLabel] = 0
        labelCount[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCount.keys():
        prob = float(labelCount[key]) / float(numEntries)
        shannonEnt -= prob * float(log(prob,2))#计算香农熵
    return shannonEnt

按某个特征划分数据集,返回属性值与传入值相同的数据的集合:

def splitDataSet(dataSet, axis, value):
    retDataSet = [] 
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis] #巧妙使用切片
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

注意这个函数中extend()和append()的用法:
a= [1,2,3]
b=[4,5,6]
a.append(b)
a
[1, 2, 3, [4, 5, 6]]

a= [1,2,3]
a .extend(b)
[1, 2, 3, 4, 5, 6]

选择最佳数据集划分方式:

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1 #属性个数,需要减去最后一列的类别
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeture = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet] 取出属性列中的所有属性值
        uniqueVals = set(featList) #set函数创建一个无重复项的集合
        newEntropy = 0.0
        for value in uniqueVals: #计算属性列的信息熵
            subDataSet = splitDataSet(dataSet,i,value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob*calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy #计算信息增益
        if(infoGain > newEntropy):
            bestInfoGain = infoGain
            bestFeture = i
    return bestFeture

使用要求:

  • 调用的数据必须储存在列表中,且所有列表元素有相同长度
  • 列表元素的最后一列为类别

选择出现最多类别:

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(),
                              key = operator.itemgetter(1), reverse=True) #注意sorted函数的用法
    return sortedClassCount[0][0]

sorted函数及operator.itemgetter函数的用法详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值