软考RSA简便算法

在RSA的mod算法里,固定式是e*d = 1 mod φ(n),e是就是公钥,求出秘钥d。

在解题之前我们先理解下mod算法,下面简单举例:

17mod26的结果是多少?

个人理解的任何mod算法都可以转换为d=(kφ(n)+1)/e,也就是(k26+1)/17,且结果得出最小的整数,这时对k进行整数取值一个一个试,当k取到15时,则为(15*26+1)/17。 

也就是391/17=23,这个23就是逆元的结果。个人觉得这样不会太绕,而且不需要记原理,且考试的时候不会考很大的数字,一两分钟就得出答案了。

有了上述公式的解析,在信息安全考试中,RSA算法就变得极为简单

e*d = 1 mod φ(n)中e和 φ(n)是已知的值,n=p*q, φ(n)=(p-1)(q-1)。对于私钥d的算法使用这个万能公式:d=(kφ(n)+1)/e,对k从1进行取值,第一个能够整除的,且整除的结果就是d的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coloredg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值