背景:还是秋招刷题
参考:https://www.bilibili.com/video/av57064859?from=search&seid=769707923257914088 (B站果然是学习的网站)
题目:一个M*N网格,从左下角(0,0)出发,走到右上角。只能向上走和向右走,有多少条路径?
一、无障碍物版本
解题思路:
不管怎样,都要往上走M-1次,往右走N-1次,且一共一定要走N+M-2次
也就是总共选择机会有N+M-2次,其中选M-1次往上走,剩下的是往右走,即C(N+M-2,M-1),当然也可以C(N+M-2,N-1)。
排列组合公式:
排列A(m,n)=m×(m-1).(m-n+1)=m!/(m-n)!(m为下标,n为上标) 从m个中取n个的所有排列
组合C(m,n)=P(m,n)/P(n,n) =m!/n!(m-n)!;从m个取n个,不用排列
代码如下:
def barrier_free_all_ways(M,N):
f=lambda n:1 if n==0 else n*f(n-1) #n是形参,如果n=0则返回1,否则返回n*f(n-1) #这一句是求阶乘,复杂度为O(n)
C=lambda p,q:f(p)/f(q)/f(p-q) #