KMP的前生后世

🤔简单暴力匹配算法

在这里插入图片描述

➡️定义

  • 子串的定位操作

➡️算法思想

  • 主串S的第一个字符起,与模式T的第一个字符比较,若相等,则继续逐个比较后续字符;否则从主串的下一个字符起,重新和模式的字符比较。

➡️代码

int Index(SString S,SString T){
	int i=1,j=1;
	while(i<=S.length && j<=T.length){
        	if(S.ch[i]==T.ch[j])(
          	    ++i;++j;  
    		 }
                else{
                     i=i-j+2; j=1; //指针后退重新开始匹配
                 }
         } 
       if(j>T.length) return i-T.length;
        else return 0;
}

😊小主看到这里停留几分钟自己思考分析一下代码

➡️时间复杂度

  • 最坏时间复杂度为O(mn),其中n和m分别为主串模式串的长度

🤔KMP算法

在这里插入图片描述

➡️next数组计算案例

在这里插入图片描述

上图的模式串中已求得6个字符的next值,现求next[7],因为next[6]=3,又p6!=p3,则需比较p6和p1(因next[3]=1),由于p6!=p1,而next[1]=0(注意这里是因为next[1]=0,才停止比较,否则继续用next[next[1]]继续比较下去),所以next[7]=1;求next[8],因p7=p1,next[8]=next[7]+1=2;next[9],因p8=p2,则next[9]=3。

😊小主稍加阅读三遍便能体会

➡️计算next数组代码

void get_next(String T,int next[]){
     int i=l, j=0;
     next[1]=0;
     while(i<T.length){
          if(j==0 || T.ch[i]==T.ch[j]){
                 ++i; ++j;
               next[i]=j;  //若pi=pj,则next[j+1]=next[j]+1
          }
          else
         j=next[j];     //否则令j=next[j],循环继续
     }
}

➡️匹配算法代码

 int Index KMp(String S,String T,int next[]){
    int i=l, j=l;
    while(i<=S.length&&j<=T.length){
       if(j==0||s.ch[i]==T.ch[j]){
           ++i;++j; //继续比较后继字符
        }
        else
            j=next[j]; //模式串向右移动
     }
     if(j>T.length)
         return i-T.length; //匹配成功
     else 
         return 0;
}

➡️时间复杂度

主串中的i下标不会回溯,大大优化了算法,时间复杂度为O(m+n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值