剑指offer面试题10:变态青蛙跳java实现

题目描述
  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

问题分析
  由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题。
  那么从递归的三个步骤开始寻找解决方案:
  1. 递归截止条件。
  由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1。当n=2时,可以每次跳1阶,也可以一次跳两阶,则F(2) = 2。
  2. 递归的前后衔接。
  假设现在又n阶,可以跳完n阶的情况分别是:一次跳完F(0);先跳一步F(1),后面还有F(n-1)种跳法;或者先跳两步F(2),后面还有F(n-2)种跳法。依次类推,第一次跳出n阶后,后面还有 F(n-n)中跳法。可以得出:
  F(n) = F(n-1)+F(n-2)+F(n-3)+…+F(0) 由递推关系可得 F(n) = 2 * F(n-1)

思路一:递归。按递归公式实现。由于 F(n) = F(n-1)+F(n-2)+F(n-3)+…+F(0) 可知

public int frog(int target){
        if(target==0||target==1)
        return 1;
        if(target==2)
        return 2;
        int sum=0;
        for(int i=0;i<target;i++){
        sum+=frog(i);
        }
        return sum;
        }

思路二:非递归。 由递推关系可知 F(n) = 2 * F(n-1),用一个变量来记录每次计算产生的F(n-1)的值,直到循环到n。

  public int frog(int target){
        if(target==0||target==1)
            return 1;
        if(target==2)
            return 2;
        int sum=1;
        for(int i=1;i<target;i++){
            sum *= 2;
        }
        return sum;
    } 

参考链接:https://blog.csdn.net/m0_38088298/article/details/86654481
https://www.cnblogs.com/centor/p/5796455.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值