题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析
由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题。
那么从递归的三个步骤开始寻找解决方案:
1. 递归截止条件。
由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1。当n=2时,可以每次跳1阶,也可以一次跳两阶,则F(2) = 2。
2. 递归的前后衔接。
假设现在又n阶,可以跳完n阶的情况分别是:一次跳完F(0);先跳一步F(1),后面还有F(n-1)种跳法;或者先跳两步F(2),后面还有F(n-2)种跳法。依次类推,第一次跳出n阶后,后面还有 F(n-n)中跳法。可以得出:
F(n) = F(n-1)+F(n-2)+F(n-3)+…+F(0) 由递推关系可得 F(n) = 2 * F(n-1)
思路一:递归。按递归公式实现。由于 F(n) = F(n-1)+F(n-2)+F(n-3)+…+F(0) 可知
public int frog(int target){
if(target==0||target==1)
return 1;
if(target==2)
return 2;
int sum=0;
for(int i=0;i<target;i++){
sum+=frog(i);
}
return sum;
}
思路二:非递归。 由递推关系可知 F(n) = 2 * F(n-1),用一个变量来记录每次计算产生的F(n-1)的值,直到循环到n。
public int frog(int target){
if(target==0||target==1)
return 1;
if(target==2)
return 2;
int sum=1;
for(int i=1;i<target;i++){
sum *= 2;
}
return sum;
}
参考链接:https://blog.csdn.net/m0_38088298/article/details/86654481
https://www.cnblogs.com/centor/p/5796455.html