近日,北京航空航天大学和中国科学院大学等机构的研究者新提出的姿态稳健型空间可感知式 GAN(PSGAN),可以很方便地实现可定制化的妆容迁移,真可谓:美人秀色空绝世,我用 AI 试伊妆。

能够稳健地处理不同的姿态,也就是在源图像和参照图像的姿态不同时也要能生成高质量的结果,比如可以将侧脸图像上的妆容迁移到正脸图像上。
能够实现逐部分迁移的迁移过程,即可以分开迁移人脸上不同区域的妆容,比如眼影或唇彩。
能够控制妆容的浓浅程度,即可以增强或减弱被迁移妆容的效果。Chen et al. 2019 提出了将图像解构为妆容隐码(makeup latent code)和人脸隐码(face latent code)来实现对妆容浓浅程度的控制,但这项研究并未考虑其它两项需求。


PSGAN 是首个能同时实现逐部分迁移、浓浅程度可控迁移和姿势稳健型迁移的基于 GAN 的方法。
新提出的 AMM 模块可以调整从参照图像提取出的妆容矩阵,使其适应源图像。这个模块让 PSGAN 有能力在姿态不同的图像之间迁移妆容风格。
研究者进行了广泛的定性和定量实验,结果表明 PSGAN 是有效的。

判别器的对抗损失(adversarial loss)和生成器的对抗损失;
循环一致性损失(cycle consistency loss),由 Zhu et al. 2017 提出,这里使用了 L1 损失来约束重建的图像和定义循环一致性损失;
感知损失(perceptual loss),使用 L2 损失来衡量迁移后的图像与源图像的个人身份差异。研究者使用了一个在 ImageNet 上预训练的 VGG-16 模型来比较源图像和生成图像在隐藏层中的激活;
妆容损失(makeup loss),由 Li et al. 2018 提出,能为妆容迁移提供粗略的引导;
总损失(total loss),以上各个损失的加权和。






