解决服务器上多版本CUDA,TensorFlow程序正常运行,在本地使用Pycharm远程调用运行出错问题

代码在Ubuntu服务器与PyCharm本地远程部署环境下行为不一致,出现CuDNN runtime library版本错误。解决办法是通过PyCharm设置远程解释器时指定环境变量,确保指向正确的CuDNN库位置,从而避免使用默认版本导致的问题。
摘要由CSDN通过智能技术生成

问题:同一份代码在Ubuntu服务器上使用相同的环境运行,正常执行,而在本地win上使用pycharm部署到Ubuntu服务器,使用同样的环境运行却出现错误:

E tensorflow/stream_executor/cuda/cuda_dnn.cc:319] Loaded runtime CuDNN library: 7.0.5 but source was compiled with: 7.6.0. 
 CuDNN library major and minor version needs to match or have higher minor version 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值