1 前言
得益于硬件技术的发展,基于深度学习的各种识别方法如火如荼,在各种应用场景中都取得很好的效果。本人入行深度学习领域若干年,做过很多项目的工程化评估,对于神经网络是如何工作的也解释不清楚,只是知道这样做是可行的。有的时候,给客户介绍说,做某目标识别算法,如果采用深度学习的方法可以做到多高多高的性能,客户有时候会反问道:那么相比于传统方法,深度学习有多少性能提高?我通常无法直接回答这个问题,虽然我知道深度学习的方法肯定会比传统方法更好,但是我没有做相应的实验,没有对比,没有证据。我只好说,神经网络是黑盒模型,虽然不知道底层逻辑是如何运作的,但是有理论证明神经网络可以拟合任意函数,所以神经网络要比传统方法更强大。客户似懂未懂地点点头,不再说话,我知道他对这个回答并不满意。对于他这种级别的人物,掌握着项目的命运,对具体的技术细节不关心,只关心最终的效果。后来给另一个客户做算法性能评估,我使用神经网络算法进行性能评估,最后性能并不理想,精度只有80%左右,我跟客户说,神经网络模型在这种类型的信号识别精度不是很高,客户说,没关系,只要证明神经网络算法比传统方法好就行了,然后让我做证明去了。经过一些列事情之后,我在终于开始重视起来传统的方法来。
2 理论基础
在没有神经网络之前,人们是如何实现图片的分类和识别的呢?比如说,一个陌生人,你从来没见过他,但是给你一张他的照片,你能否从茫茫人海中认出他来?我想,只要你不是脸盲的话,你是有很大概率能认出来的。当然,能不