#include <iostream>
#include <string>
#include <cstring>
#define MAX 1005
using namespace std;
/*************************************************************************************************************
表达式树:将一个四则运算表达式(含括号)转化成二叉树并计算结果
创建树(递归):
1,找到“最后运算”的运算符(一定为树的根),然后递归创建
2,利用 p == 0 时找到最右出现的 + - 和 * / 运算符,分别用 c1 c2保存位置
p != 0时该操作符一定在括号内,且括号一定不是最后计算,只有 p == 0才考虑当前字符
3,当 c1 < 0时,说明没有 + - 操作符出现在最右,则需考虑 * /运算符。(c1 = c2)
若 c2 也小于 0,说明整个算式最右无 + - * /,即整个算式都在一个大括号内
去掉括号递归调用即可 build_tree(x+1,y-1);
4,递归创建左右子树即可
5,计算表达式的结果,递归遍历树即可,碰到叶子结点即非操作符结点 return 即可;
Input:
a+b
a+b*(f-a)-d/b
(a+b*c)
OutPut:
3
9
7
PS:这里写的是一个一般化的程序,如果输入数字,将字母改成数字即可
*************************************************************************************************************/
string s;
int nc; //结点编号
int lch[MAX],rch[MAX]; //左右孩子结点编号
char op[MAX]; //结点的操作字符
int ans = 0; //计算结果
int build_tree(int x,int y){
int c1 = -1,c2 = -1,p = 0;
int u; //结点编号
if(y-x == 1){
u = ++nc;
lch[u] = rch[u] = 0;
op[u] = s[x];
return u;
}
for(int i = x;i < y;i ++){
if(s[i] == '(') p++;
if(s[i] == ')') p--;
if(!p && (s[i] == '+' || s[i] == '-'))
c1 = i;
if(!p && (s[i] == '*' || s[i] == '/'))
c2 = i;
}
if(c1 < 0 && c2 < 0) //找不到最后出现的四则运算符号,即整个算式被大括号括着
return build_tree(x+1,y-1);
if(c1 < 0) //找不到 + || - 运算,就用 * || / 运算
c1 = c2;
u = ++nc;
lch[u] = build_tree(x,c1);
rch[u] = build_tree(c1+1,y);
op[u] = s[c1];
return u;
}
int dfs(int id){
if(isalpha(op[id])) return (int)(op[id]-'a' + 1);
if(op[id] == '+')
return dfs(lch[id]) + dfs(rch[id]);
if(op[id] == '-')
return dfs(lch[id]) - dfs(rch[id]);
if(op[id] == '*')
return dfs(lch[id]) * dfs(rch[id]);
if(op[id] == '/')
return dfs(lch[id]) / dfs(rch[id]);
}
int main()
{
while(cin>>s){
nc = 0; //每次重置结点编号从0开始
int len = s.size();
build_tree(0,len);
/*for(int i = 1;i <= nc;i ++) //可利用输出查看树的构建情况,包括根节点,左右孩子结点
cout<<"op: "<<op[i]<<" lch: "<<lch[i]<<" rch: "<<rch[i]<<endl;*/
ans = dfs(1);
cout<<ans<<endl;
}
return 0;
}
表达式树 (二叉树的应用)
最新推荐文章于 2024-07-30 20:25:46 发布