做这道题,首先是要理解清楚题目意思。没有理解清楚题目中给出的i*x,j*y是没法做题的。
两条主线:
1.对于点(x, y),要求对行数凡是x的倍数的行进行一次翻转,对列数凡是y的倍数的列进行一次翻转
2.要关注到题目后面给出的“数据规模和约定”,给定的范围比较大,需要做一定的处理
一个主意:
对于10*1000这样庞大的数据类型,要么会用到数组去存储一个数,要么就一定会涉及到优化…
http://blog.csdn.net/misdom_tian_ya/article/details/44459827
这个是详解的思路
用Java的优势在于:Java中自带了BigInteger类,可以在一定程度上比较好的处理大数问题。
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner cin = new Scanner(System.in);
String s1 = cin.next();
String s2 = cin.next();
BigInteger ans1 = BigSqrt(s1);
BigInteger ans2 = BigSqrt(s2);
//System.out.println(ans1+" "+ans2);
BigInteger ans = ans1.multiply(ans2);
System.out.println(ans);
}
private static BigInteger BigSqrt(String s) {
int mlen = s.length(); //被开方数的长度
int len; //开方后的长度
BigInteger beSqrtNum = new BigInteger(s);//被开方数
BigInteger sqrtOfNum; //存储开方后的数
BigInteger sqrtOfNumMul; //开方数的平方
String sString;//存储sArray转化后的字符串
if(mlen%2 == 0) len = mlen/2;
else len = mlen/2+1;
char[] sArray = new char[len];
Arrays.fill(sArray, '0');//开方数初始化为0
for(int pos=0; pos<len; pos++){
//从最高开始遍历数组,每一位都转化为开方数平方后刚好不大于被开方数的程度
for(char num='1'; num<='9'; num++){
sArray[pos] = num;
sString = String.valueOf(sArray);
sqrtOfNum = new BigInteger(sString);
sqrtOfNumMul = sqrtOfNum.multiply(sqrtOfNum);
if(sqrtOfNumMul.compareTo(beSqrtNum) == 1){
sArray[pos]-=1;
break;
}
}
}
return new BigInteger(String.valueOf(sArray));
}
}
其他做法:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAXN 1100
char n[MAXN];
char m[MAXN];
int sqrtn_ans[MAXN];
int sqrtm_ans[MAXN];
int mul_ans[MAXN];
int temp1[MAXN];
int Sqrt(int ans[],char n[]);
int compare(int a[],int b[],int len1,int len2);
int mul(int ans[],int a[],int b[],int len1,int len2);
int add(int ans[],int b[],int len1,int len2);
int main()
{
int len1,len2,ansLen,i;
scanf("%s%s",n,m);
memset(sqrtn_ans,0,sizeof(sqrtn_ans));
memset(sqrtm_ans,0,sizeof(sqrtm_ans));
len1=Sqrt(sqrtn_ans,n);
len2=Sqrt(sqrtm_ans,m);
memset(mul_ans,0,sizeof(mul_ans));
ansLen=mul(mul_ans,sqrtn_ans,sqrtm_ans,len1,len2);
for(i=ansLen-1;i>=0;i--)
printf("%d",mul_ans[i]);
printf("\n");
return 0;
}
//求大数的平方根,先将字符串数组转换成整型数组,然后在求平方根,运算结果保存在ans中,
//函数返回运算结果的位数
int Sqrt(int ans[],char n[])
{
int len=strlen(n),ansLen,mulLen,i,j;
if(len%2==0)
ansLen=len/2;
else
ansLen=len/2+1;
int *num=(int *)malloc(sizeof(int)*len);
//将字符串数组转换成整型数组
for(i=0,j=len-1;i<len;i++,j--)
num[j]=n[i]-'0';
for(i=ansLen-1;i>=0;i--)
{
int flag;
memset(temp1,0,sizeof(temp1));
mulLen=1;
while((flag=compare(temp1,num,mulLen,len))==-1)
{
ans[i]++;
mulLen=mul(temp1,ans,ans,ansLen,ansLen);
}
if(flag==1)
ans[i]--;
else if(flag==0)
break;
}
return ansLen;
}
//高精度*高精度乘法运算,数组a和b中存放两个操作数,a的长度为len1,b的长度为len2,
//运算结果保存在ans中,函数返回运算结果的位数
int mul(int ans[],int a[],int b[],int len1,int len2)
{
int i,j;
memset(ans,0,sizeof(int)*MAXN);
for(i=0;i<len1;i++)
{
for(j=0;j<len2;j++)
{
ans[i+j]+=a[i]*b[j];
}
}
for(i=0;i<len1+len2;i++)
{
ans[i+1]+=ans[i]/10;
ans[i]=ans[i]%10;
}
for(i=len1+len2;i>=0;i--)
{
if(ans[i])
break;
}
return i+1;
}
//比较两个操作数的大小,若相等则返回0,否则若a>b,返回1,a<b,返回-1.
int compare(int a[],int b[],int len1,int len2)
{
if(len1>len2)
return 1;
else if(len1<len2)
return -1;
else if(len1==len2)
{
int i;
for(i=len1-1;i>=0;i--)
{
if(a[i]>b[i])
return 1;
else if(a[i]<b[i])
return -1;
}
}
return 0;
}