1、问题描述
小明先把硬币摆成了一个 n 行 m 列的矩阵。
随后,小明对每一个硬币分别进行一次 Q 操作。
对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。
其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。
当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。
小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。
聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
2、代码实现
import java.math.BigDecimal;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
/*
求最开始有多少枚硬币是反面朝上的
也就是求硬币翻面为奇数次的个数,换句话说就是求完全平方数
比如16:它的完全平方数的个数为4 有1,2,3,4
比如36:它的完全平方数的个数为6 有1,2,3,4,5,6
我们需要求的是x行y列的完全平方数的个数也就是 sqrt(x) * sqrt(y)
*/
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String s1 = scanner.next();
String s2 = scanner.next();
System.out.println(sqrt(s1).multiply(sqrt(s2)));
}
//开方
public static BigDecimal sqrt(String s) {
int len = s.length();
//得到开方后的值的长度
if(len % 2 == 0) {
len = len / 2;
}else {
len = len / 2 + 1;
}
//存放开方后的值
char[] arr = new char[len];
//全部填充为0,方便计算
Arrays.fill(arr, '0');
//原来的值
BigDecimal original = new BigDecimal(s);
for(int i = 0;i < len;i++) {
//从1开始填充这个值,慢慢接近开方后的值
for(char c = '1';c <= '9';c++) {
arr[i] = c;
BigDecimal pow = new BigDecimal(String.valueOf(arr)).pow(2);
//将当前的数字开方后和原数字进行比较,如果大于原数字
//当前位置的数字减1,继续遍历下一个位置的数字
if(pow.compareTo(original) == 1) {
arr[i]--;
break;
}
}
}
//得到最接近的数字
return new BigDecimal(String.valueOf(arr));
}
}