LeetCode 39&40 Medium 组合数之和1/2 Python

39题:组合数之和    

算法:递归/回溯

    思路

            像求子集一样,需要遍历所有的可能情况,而while,for这样的循环都是某种意义上的"定循环",循环

        的"次数"是固定的,这里打引号是因为,while的次数可以不定,但是for和while都是一层循环,应该用这

        个词描述比较好,都是单层循环,而递归可以嵌套,根据递归的条件可以构造不定次循环。,◀️这是关键

            OK,看这道题

            其实就是要把所有可能的状态都去试一下,很容易联想到用递归,每次算的时候都去找小于target的

        candidates中的元素,添加到【临时列表】中,只有最后这些临时列表中的元素和等于target才应该把

        它们添加到result中,所以递归的时候应该向下一层循环传入的target应该为target-curr_num,以及

        当前的路径path情况。

            这里要注意为了避免重复,请联想twoSum,treeSum那些题的思路,出现重复的原因是前面用过了后面还要用,

        譬如[4,2,8]->8,如果每次向后传入的都是最原始的candidate整个列表,会出问题,如:

            当前判定的num是4,根据算法,会得到一组[4,2,2]的解

            当前判定的num位2时,如果这时遍历的列表还是[4,2,8],那么就会产生[2,2,4]的解,与前面重复了

            所以,关键就是,如果前面的元素i和后面的元素j通过组合能形成解(毕竟这个解不管ij的排列顺序),那么

        在以i判定的时候,就一定会解出所有ij可以构成的解(况且本题还允许各个位置的数字自身重复)。那么去重

        的方式就是在后面判定的时候,传入的是当前位置开始的数组的切片,candidates[i:],这样在判定当前位置i

        的后续组成元素时,就不会去找i之前的元素了,避免了重复,达到了【剪枝】的效果

    ps:看别人的题解基本都用了排序来去重,其实我这种解法,通过传入当前位置后的切片这个思想就可以避免排序的操作达到去重的效果

    复杂度分析:

        时间:不会算。。反正肯定大于ON2小于NO2^N

        空间:不会算。。反正肯定大于ON2小于NO2^N

def combinationSum( candidates, target):

    def find(candidates, target, path, result):

        if target < 0:

            return

        for i in range(len(candidates)):

            curr_path = path + [candidates[i]]

            if candidates[i] == target:

                result.append(curr_path[:])

            if candidates[i] < target:

                find(candidates[i:], target - candidates[i], curr_path[:], result)



    result = []

    find(candidates, target, [], result)

    return result

40题:组合数之和2

    算法:递归/回溯

    思路

            和第39题的思路相近,代码也相近,不同的是本题目中原candidates列表中有重复元素了

        并且每个元素自身不能重复使用了,只能使用duplicate次,即每个元素能使用1次,但是一个元素可能

        其相同的元素共有n个,所以解中相同元素至多能用n次

            故和39题相比,第一联想到的就是将数组先排序再做,排序后使得相同的元素挨在了一起,那么套用

        39题的思路向下传candidates[i+1:]时,如果后面是相同的元素,则至多使用其每个位置1次,而本身

        不会再被重复使用(注意39题中向下传的是candidates[i:],这样写本身元素可以被重复使用)。然后

        要注意做去重的工作,用一个set记录tuple格式的数组就可以完成去重。并且这里sort后以及向下

        传入candidates[i+1]去判断后续的元素保障了组成同一解的元素排列是相同的,即只会有(i,j,k),(i,j,k)

        不会有(i,j,k),(j,k,i)。

 

        ps:

            也尝试过不用set,去判断当前循环层candidates[0]首部元素是否和result解中最后一个解的首部元素相同,

        但是这样是错误的!如一个正确无重复的result[[1,2,5],[1,7],[1,1,6],[2,6]],如果按解的头部重复就不加入

        解的话,那么答案会变成[[1,2,5],[2,6]],显然错误!

    复杂度分析:

        时间:不会算。。反正肯定大于ON2小于NO2^N

        空间:不会算。。反正肯定大于ON2小于NO2^N

def combinationSum2(self, candidates, target):

    def find(candidates, target, path, result, res_set):

        if target < 0:

            return

        for i in range(len(candidates)):

            curr_path = path + [candidates[i]]

            if candidates[i] == target and tuple(curr_path) not in res_set:

                result.append(curr_path[:])

                res_set.add(tuple(curr_path))

            if candidates[i] < target:

                find(candidates[i + 1:], target - candidates[i], curr_path[:], result, res_set)



    result = []

    candidates.sort()

    find(candidates, target, [], result, set())

    return result

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值