leetcode 62 组合数+动态规划

这篇博客介绍了如何解决LeetCode第62题,通过组合数和动态规划两种方法。解法一是利用组合数计算向下或向右的走法;解法二是采用动态规划,通过优化空间复杂度到O(N)来提高效率。
摘要由CSDN通过智能技术生成

解法一:组合数
一共有m-1和n-1种向下或向右的走法,用组合数排序

from math import factorial
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        return int(factorial(m+n-2)/(factorial(m-1)*factorial(n-1)))

解法二:dp
和爬楼梯问题类似,解法求和,啪的一下就过了

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[1 for _ in range(n)] for _ in range(m)]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[m-1][n-1]

然鹅,很快就发现这个其实并不是很快,因为你其实只需要看上一行,以前的都没用,综上,咱们只需要保存一个数组即可解决问题,代码如下:

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [1 for _ in range(n)]
        for i in range(1, m):
            for j in range(1, n):
                dp[j] += dp[j-1]
        return dp[-1]

经过如下优化,空间复杂度可优化至O(N)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值