深度学习
文章平均质量分 59
Webwarz
在校研究生一枚,研究方向为城市声学事件音频信号的分类与识别,以及音频分离,以深度学习的知识解决实际问题
展开
-
keras导入现有tf预训练模型的方法
下载预训练模型链接https://github.com/fchollet/deep-learning-models/releases预训练模型放置位置mv resnet50_weights_tf_dim_ordering_tf_kernels.h5 ~/.keras/models(默认安装位置)原创 2021-09-03 14:01:52 · 434 阅读 · 0 评论 -
RNNoise算法
RNNoise算法论文阅读摘要 尽管噪声抑制是信号处理中的一个相对成熟的领域,但它仍然依赖于估计器算法和参数微调。本文中,作者展示了一种噪声抑制的混合DSP/深度学习方法。作者在保证输出高质量增强语音的同时,尽可能地降低算法的复杂性。利用四层隐含层的深度循环神经网络估计理想的临界频带增益,并采用传统的基音滤波器衰减基音谐波间的噪声。与传统的最小均方误差频谱估计器相比,该方法实现了更高的增强语音质量,且保持了足够低的复杂性,以便以48KHz的采样率实时在低功耗CPU上操作。关键词:噪声抑制、循环神经网原创 2021-06-18 10:02:09 · 1975 阅读 · 0 评论 -
win10系统tensorflow2.4.0-gpu安装“Not creating XLA devices, tf_xla_enable_xla_devices not set”解决方法
win10系统tensorflow2.4.0-gpu安装“Not creating XLA devices, tf_xla_enable_xla_devices not set”解决方法未解决前报错 最近在安装tensorflow2.4.0-gpu版本后的项目开发过程中出现了“Not creating XLA devices, tf_xla_enable_xla_devices not set”的错误,控制面板下调试代码及结果如图1所示:图1 修复前报错解决方法 从网上找了很多方法,基本上都原创 2021-04-12 13:31:49 · 2926 阅读 · 13 评论 -
win10系统配置tensorflow学习环境总结
win10系统配置tensorflow学习环境总结初衷 配置tensorflow学习环境需要从自己的显卡、CUDA+cuDNN版本、tensorflow-gpu版本、编辑器(VS2019或Spyder等)入手,由于此前没有创建虚拟环境,在base环境下由于一些第三方模块会与当前tensorflow版本不一致,从而导致cuda及cudnn的.dll文件缺失,然后每次添加这些缺失文件又很繁琐,因此这里建议各位针对不同的开发项目创建新的虚拟环境。这里,我也顺便总结一下win10系统下配置tensorfow学原创 2021-03-11 16:33:39 · 449 阅读 · 1 评论