机器学习总结
文章平均质量分 94
Webwarz
在校研究生一枚,研究方向为城市声学事件音频信号的分类与识别,以及音频分离,以深度学习的知识解决实际问题
展开
-
机器学习损失函数小结
机器学习损失函数小结概述损失函数、代价函数、目标函数的区别与联系分类问题中的损失函数0-1损失函数Hinge损失函数Logistic损失函数交叉熵损失函数回归问题中的损失函数平方损失函数绝对损失函数Huber损失函数 概述 机器学习算法实际上就是模型表征、优化和评估的过程,其中,模型评估决定了后续的优化算法及模型改进的走向,而衡量模型评估的指标就是损失函数。参考李航老师的《统计学习方法》关于损失函数的描述: 监督学习问题是在假设空间F\mathcal{F}F中选取模型fff作为决策函数,对于给定的输入原创 2021-02-05 17:34:17 · 656 阅读 · 0 评论 -
机器学习知识点总结
机器学习知识点总结(1)——特征工程01 特征归一化为什么要进行特征归一化怎么进行特征归一化进一步说明为什么要进行特征归一化 俗话说,“巧妇难为无米之炊”。在机器学习中,数据和特征好比是“米”,模型和算法则是“巧妇”。没有充足的数据、合适的特征,再强大的模型结构也无法得到满意的输出。特征工程,顾名思义,是对原始数据及逆行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上说,特征工程...转载 2019-07-14 17:11:37 · 267 阅读 · 0 评论 -
机器学习知识点总结(2)——优化器
机器学习知识点总结(2)——优化器前言有监督学习的损失函数机器学习中常用的优化算法 前言 机器学习算法 = 模型表征 + 模型评估 + 优化算法,其中,优化算法所做的事就是在模型表征空间中找到模型评估指标最好的模型。不同的优化算法对应的模型表征和评估指标不尽相同。比如: 支持向量机对应的模型表征和评估指标为线性分类模型和最大间隔; 逻辑回归对应的模型表征和评估指标为线性分类模型和交叉熵。 机...原创 2019-07-25 11:31:11 · 301 阅读 · 0 评论