题目分析
最多只能买卖两次,发生两次交易行为,求最大利润
#
III是这三题中最难的。允许两次买卖,但同一时间只允许持有一支股票。也就意味着这两次买卖在时间跨度上不能有重叠(当然第一次的卖出时间和第二次的买入时间可以是同一天)。既然不能有重叠可以将整个序列以任意坐标i为分割点,分割成两部分:
prices[0:n-1] => prices[0:i] + prices[i:n-1]
对于这个特定分割来说,最大收益为两段的最大收益之和。每一段的最大收益当然可以用I的解法来做。而III的解一定是对所有0<=i<=n-1的分割的最大收益中取一个最大值。为了增加计算效率,考虑采用dp来做bookkeeping。目标是对每个坐标i:
1. 计算A[0:i]的收益最大值:用minPrice记录i左边的最低价格,用maxLeftProfit记录左侧最大收益
2. 计算A[i:n-1]的收益最大值:用maxPrices记录i右边的最高价格,用maxRightProfit记录右侧最大收益。
3. 最后这两个收益之和便是以i为分割的最大收益。将序列从左向右扫一遍可以获取1,从右向左扫一遍可以获取2。相加后取最大值即为答案。
下面这个链接包括三种方法
class Solution {
public int maxProfit(int[] prices) {
if(prices==null||prices.length<2) return 0;
int n= prices.length;
int [] left_max_profit =new int[n];
int [] right_max_profit = new int[n];
left_max_profit[0] = 0;
int min = prices[0];
for(int i=1; i<n;++i){
// prices[i]-min 表示在该处卖出去的股票价格,
left_max_profit[i] = Math.max(left_max_profit[i-1], prices[i]-min);
min = Math.min(min,prices[i]);
}
right_max_profit[n-1] = 0;
int max = prices[n-1];
for(int i= n-2;i>=0;--i){
right_max_profit[i] = Math.max(max-prices[i],right_max_profit[i+1]);
max = Math.max(max, prices[i]);
}
int result = left_max_profit[0] +right_max_profit[0];
for(int i=1;i<n;i++){
result = Math.max(result,left_max_profit[i]+right_max_profit[i]);
}
return result;
}
}