蓝桥杯java组之埃氏筛与欧拉筛

埃氏筛

埃氏筛的原理:一个素数的倍数一定是合数
应用这个原理,我们可以逐步筛去0-n区间内的合数
代码实现如下

import java.util.*;
public class Text_1 {
	public static void main (String[] args) {
		Scanner s = new Scanner(System.in);
		int n = s.nextInt();
		int[] is_prime = new int[n+1];             //标记是否为素数,0代表是,1代表不是
		int[] prime = new int[n+1];                //存放素数
		is_prime[0]=1;                            //0与1都不是素数
		is_prime[1]=1;
		int count=0;                             //记录素数的个数           
		for(int i=2;i<=n;i++) {
			if(is_prime[i]==0) {                 //从2开始,如果是素数,将其存放进prime数组里
				prime[count]=i;       
				count++;                         //素数数量加一
				for(int j=2;i*j<n;j++) {         //将0-n中素数的倍数全部筛选出,标记为合数
				is_prime[i*j]=1;
			    }                        
			}
		}
		for(int i=0;i<count;i++) {             //打印出0-n的所有素数
			System.out.println(prime[i]);
		}
	}
}

示例输入

100

示例输出

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

从上述代码也可以看出,筛选的过程存在重复,这在很大程度上影响了算法的效率,比如4和6会同时被2和3筛选

欧拉筛

欧拉筛是在埃氏筛上的改进,能有效避免重复筛选的情况,时间复杂度O(n)

欧拉筛的核心思想就是确保每个合数只被最小质因数筛掉。或者说是被合数的最大因子筛掉。

比如说 1 ,2,3,4,5,6,7,8,9,10,11, 12
当 i=4时: primes = {2, 3}
此时i%2=0, 如果不结束内层循环的话,12会被3∗4筛掉, 当i=6时,12又会被2∗6筛掉。

代码实现

import java.util.*;
public class Test_2 {
	public static void main (String[] args) {
		Scanner s = new Scanner(System.in);
		int n = s.nextInt();
		int[] is_prime = new int[n+1];
		int[] prime = new int[n+1];
		is_prime[0]=1;
		is_prime[1]=1;
		int count=0;
		for(int i=2;i<=n;i++) {
			if(is_prime[i]==0) {      
				prime[count]=i;
				count++;
			}
			for(int j=0;j<count&&i*prime[j]<=n;j++) {
				is_prime[i*prime[j]]=1;
				if(i%prime[j]==0)
					break;
			}
		}
		for(int i=0;i<count;i++) {
			System.out.println(prime[i]);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值