埃氏筛
埃氏筛的原理:一个素数的倍数一定是合数
应用这个原理,我们可以逐步筛去0-n区间内的合数
代码实现如下
import java.util.*;
public class Text_1 {
public static void main (String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int[] is_prime = new int[n+1]; //标记是否为素数,0代表是,1代表不是
int[] prime = new int[n+1]; //存放素数
is_prime[0]=1; //0与1都不是素数
is_prime[1]=1;
int count=0; //记录素数的个数
for(int i=2;i<=n;i++) {
if(is_prime[i]==0) { //从2开始,如果是素数,将其存放进prime数组里
prime[count]=i;
count++; //素数数量加一
for(int j=2;i*j<n;j++) { //将0-n中素数的倍数全部筛选出,标记为合数
is_prime[i*j]=1;
}
}
}
for(int i=0;i<count;i++) { //打印出0-n的所有素数
System.out.println(prime[i]);
}
}
}
示例输入
100
示例输出
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
从上述代码也可以看出,筛选的过程存在重复,这在很大程度上影响了算法的效率,比如4和6会同时被2和3筛选
欧拉筛
欧拉筛是在埃氏筛上的改进,能有效避免重复筛选的情况,时间复杂度O(n)
欧拉筛的核心思想就是确保每个合数只被最小质因数筛掉。或者说是被合数的最大因子筛掉。
比如说 1 ,2,3,4,5,6,7,8,9,10,11, 12
当 i=4时: primes = {2, 3}
此时i%2=0, 如果不结束内层循环的话,12会被3∗4筛掉, 当i=6时,12又会被2∗6筛掉。
代码实现
import java.util.*;
public class Test_2 {
public static void main (String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int[] is_prime = new int[n+1];
int[] prime = new int[n+1];
is_prime[0]=1;
is_prime[1]=1;
int count=0;
for(int i=2;i<=n;i++) {
if(is_prime[i]==0) {
prime[count]=i;
count++;
}
for(int j=0;j<count&&i*prime[j]<=n;j++) {
is_prime[i*prime[j]]=1;
if(i%prime[j]==0)
break;
}
}
for(int i=0;i<count;i++) {
System.out.println(prime[i]);
}
}
}