机器学习
wzw&weiye
奋斗的码学生
展开
-
《机器学习》随心记-周志华版线性模型
这学期,将学习周志华老师的《机器学习》这本书,一周两章,每章我都会做上一点笔记,笔记或多或少,或工整或潦草,一切根据我当时的时间和心情而定,简单的定义或者易理解的知识我可能附上定义甚至不写,不懂的地方会特别强调指出。所以这个学习系列我称为《机器学习》随心记。 整个随心记的每章由两部分组成,一个是我阅读时产生的问题,我会在解决后在博客的评论或者再编辑解答相应问题;另一个就是基础知识定义以...原创 2018-03-22 15:15:31 · 446 阅读 · 0 评论 -
movielens处理代码
这一篇博客主要记录自己的代码是如何对movielens数据集进行处理的,想要达到的目的很简单,就是得到一个txt文件,形式如下:第一列为user,第二列为item,第三列为rating。形如:要达到这样的目的该怎么处理呢,很简单。到达movielens的下载官网,https://grouplens.org/datasets/movielens/,选择你要下载的数据集大小类型。 其中,...原创 2018-08-24 12:00:53 · 2588 阅读 · 4 评论 -
坐标下降法(Coordinate descent)
转载 2018-04-10 19:21:31 · 2057 阅读 · 0 评论 -
《机器学习》周志华-决策树
经过前几章的学习,我发现这样做博客没有什么意义,接下来,痛定思痛,我打算换一种写博客的方式。基础的内容我可能会提一两句,可能不会提。重要提我仔细研究过的内容。 由于前面的决策树的概念,包括ID3,CD4.5,CART决策树内容较简单,不一一陈述。本次主要从4.3剪枝处理开始写。1 剪枝处理 由于有时决策树的分支过多会导致过拟合现象,所有有了剪枝处理。 ...原创 2018-03-27 20:54:02 · 632 阅读 · 2 评论 -
拉格朗日对偶性以及KKT条件
最近学习支持向量机,出现了多次对偶问题以及KKT条件。有些不懂,专门了解了一下。写下这篇博客。加深对拉格朗日对偶性的理解。本篇博客以三个部分进行叙述,原始问题,对偶问题,以及两者的关系(KKT条件)。1 原始问题 首先提出一个约束最优化问题: 这里的c(x)称为不等约束,h(x)称为等式约束。 称这个最优化问题是原始最优化问题。 然后引...原创 2018-04-08 13:28:04 · 504 阅读 · 0 评论 -
矩阵求导的例子
一个求导的例子问题∂(y−Xw)T(y−Xw)∂w∂(y−Xw)T(y−Xw)∂w说明: y、wy、w为列向量,XX为矩阵式子演化看到这个例子不要急着去查表求导,先看看它的形式,是u(w)∗v(w)u(w)∗v(w)的形式,这种形式一般求导较为复杂,因此为了简化运算,我们先把式子展开成下面的样子(注意:(Xw)T=wTXT(Xw)T=wTXT): ∂(yTy−yTXw−wTXTy+wTXTXw)∂...转载 2018-03-21 16:26:55 · 808 阅读 · 0 评论 -
《机器学习》随心记-周志华版 神经网络
1 神经网络是什么 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 那这个定义是我们所说的神经网络吗? 不全面!我们机器学习里的神经网络指的是“神经网络学习”。 接下来,我们从神经和网络两个方面进一步学习什么是机器学习的神经网络。2 神经元模型 神经元是什么?回顾一下...原创 2018-03-30 18:20:29 · 528 阅读 · 0 评论 -
《机器学习》随心记-周志华版 评估方法
这学期,将学习周志华老师的《机器学习》这本书,一周两章,每章我都会做上一点笔记,笔记或多或少,或工整或潦草,一切根据我当时的时间和心情而定,简单的定义或者易理解的知识我可能附上定义甚至不写,不懂的地方会特别强调指出。所以这个学习系列我称为《机器学习》随心记。 整个随心记的每章由两部分组成,一个是我阅读时产生的问题,我会在解决后在博客的评论或者再编辑解答相应问题;另一个就...原创 2018-03-14 14:12:37 · 385 阅读 · 0 评论 -
《机器学习》随心记-周志华版 绪论
这学期,将学习周志华老师的《机器学习》这本书,一周两章,每章我都会做上一点笔记,笔记或多或少,或工整或潦草,一切根据我当时的时间和心情而定,简单的定义或者易理解的知识我可能附上定义甚至不写,不懂的地方会特别强调指出。所以这个学习系列我称为《机器学习》随心记。 整个随心记的每章由两部分组成,一个是我阅读时产生的问题,我会在解决后在博客的评论或者再编辑解答相应问题;另一个就...原创 2018-03-14 14:06:40 · 242 阅读 · 2 评论 -
处理rating数据集,拆分成训练集和测试集,以及删除样本
import numpy as npfrom collections import defaultdictfrom re import compile,findall,splitimport randomwith open("ratings.txt") as f: ratings = f.readlines()n = random.sample(range(0, len(ra...原创 2018-08-29 11:38:17 · 2239 阅读 · 0 评论