托攻击检测基础知识-----WZW托攻击学习日记(一)

 

      ( 注:开始写这个学习日记的目的,有三个:一,检测自己学习的质量;二,与人交流,如果学习中出现什么错误欢迎指正;三,提供即将或以后想要学习相关知识的同志一丢丢帮助,也给自己的复习提供资料。

       再注:本人是新手,写作格式和内容上有什么问题请见谅,欢迎提出建议!然后学习日记中对于各个知识的理解在叙述的时候往往有两个版本,一个是官方版,另一个就是我个人理解的版本。

       还注:文中有些图或者文字是直接从我看的论文里截取的,不知道有没有构成侵权什么的。如果有问题希望提出不要找小弟麻烦0.0)

       言归正传,这次要说的就是从寒假以来学习的托攻击检测的相关基础,可能不全,欢迎补充。

1.推荐系统和协同过滤的简单说明

       要想知道托攻击是什么,我们首先得了解推荐系统是什么。百度百科上的解释为,推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程——简单的来说,就是如我们在淘宝上需要购买商品,然后淘宝会向你推荐一些你可能喜欢的商品,我们在音乐平台上听歌,平台会给你推荐一些好听的歌。(推荐系统对于学习了解托攻击检测很重要,可以寻找相关书籍论文进行了解)。

       在推荐系统中,有一种常用的方法,叫做协同过滤,简称CF(CollaborativeFiltering)。协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。(想要深度了解协同过滤的同志自己去了解吧,我这里也不讲啦)

       2.托攻击

       好了,知道了推荐系统和协同过滤(CF)两个知识,终于可以引出托攻击这个东西了。在现代社会中,在线社交平台的应运而生,随着平台的发展,推荐系统也变得日益重要。在推荐系统中,人们提出了CF这样一个推荐算法,CF对解决传统推荐系统中存在的冷启动问题及提高推荐结果的准确性具有重要作用,但其天然开放性的特点,使其容易受到攻击。解释一下开放性的原因,因为CF是基于相同喜好的群体进行推荐的,所以攻击者可以很容易伪装成该群体中的用户,所以是说具有开放性。个人理解,勿喷!

托攻击就是攻击者通过注入虚假欺骗的信息达到影响推荐系统推荐结果的目的。从托攻击目的来看, 托攻击可以分为3 类: 推攻击、核攻击和恶意扰乱攻击。推攻击试图提高目标项目的推荐排名, 核攻击试图降低目标项目的排名,而恶意扰乱攻击试图使推荐系统失灵。

3.托攻击模型

话不多说,先上图:

图一

咱们看着这个图来说,一般来说托攻击都是构建这样一个模型来进行攻击的,分为两部分,一部分是评分,即左边的rating profile,一部分是关系,即relation profile。如果只要左边一部分,我们成为评分攻击(Rating attack),只要右边一部分,我们称为关系攻击(Relation attack:),左右都要的话,称为混合攻击(Hybrid attack)。这里要提一句就是,只要右边我个人感觉是不可能的,因为这样根本没办法起到攻击的作用,哈哈。下面我们讲讲每个部分是什么意思。

目标项目(targets items)是攻击者希望提高或者降低推荐频率的项目;

选择项目(selected items)是攻击者精心挑选的一系列项目, 这些项目可以使得攻击更加有效;

装填项目(filler items)是攻击者随机选择的一系列项目, 这些项目可以使得一个攻击概貌看起来像正常用户的概貌并且难以被检测;

未评分项目(unrated items)顾名思义就是没有评分的项目。

       链接用户(linked Users)是建立联系的正常用户。

       未链接用户(unlinked Users)是未建立联系的正常用户。

       4.托攻击构造模型

      

图二

以下都是基于推攻击,和图1联系着看:

 

先说关系攻击模型吧,两个模型,随机链接攻击和目标链接攻击。

随机链接攻击就是攻击者随机的选取用户进行链接关系。

目标链接攻击就是攻击者选择特定的用户进行链接关系。

这里值得一提的是所选取的用户是可以分为三类的,第一种为新用户,第二种为活跃用户,第三种为普通用户。

 

再说说评分攻击模型,五个模型,选样攻击,随机攻击,平均攻击,流行攻击,分段攻击。

选样攻击是通过复制真实用户的模式来伪造评级配置文件。

随机攻击是对装填项目评分取随机值。

平均攻击是装填项目评分取该项目的平均值。

流行攻击利用少数流行项目可以吸引大多数人的注意, 攻击者将流行项目作为选择项目。

分段攻击将目标项目的近邻项目作为选择项目, 以加强对同类型用户的影响程度。

 

5.托攻击检测

       接下来,再说说托攻击检测。托攻击是攻击者通过注入虚假信息达到目的。那么,这些信息又是什么呢?

       现在的研究主要是分为两个,一个是检测虚假评分,一个是检测虚假关系。

       虚假评分就是攻击者对于一个商品或者项目进行过高的或者过低的评分。

       虚假关系就是攻击者会注入与真实用户建立联系的虚假用户,如微博里,虚假用户可以去关注真实用户。

       托攻击检测就是检测出攻击者的攻击构造样貌模型。

 

6.推荐托攻击指标

       预测准确度:即计算在托攻击的情况下和正常的情况下的预测值的平均偏移。

       排序准确度:即Top-N推荐列表,就是观察目标攻击的用户是否进入了正常用户的top-N推荐列表。

 

7.托攻击检测算法分类

       算法分类可分为,监督学习,无监督学习和半监督学习。

       这部分呢,我觉得现在讲都太空了,能讲的就是些算法名字,我觉得讲了对我来说没啥意义,对读的人来说也没意义。等我如果学了一个个算法后再来说吧。

 

 

       结语:这是第一次写这种东西,所以不足肯定很多,在这个学期我除了托攻击我还会学习深度学习和机器学习的相关内容,有时间我也会多多写一些东西和大家分享,也不知道有没有人看,哈哈,给自己看也行。再次欢迎大家指出不足的地方,其实学托攻击我有的地方也迷迷糊糊的。

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值