numpy中的滑动窗口函数

本文介绍了如何使用numpy的滑动窗口视图功能,通过指定窗口大小在多维数组上创建滑动视图,适用于数据分析及机器学习预处理场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lib.stride_tricks.sliding_window_view(x, window_shape, axis=None, *, subok=False, writeable=False)

使用给定的窗口形状将滑动窗口视图创建到阵列中。

滑动或移动窗口,它滑动到阵列的所有维度,并在所有窗口位置提取阵列的子集。

注意:numpy版本 必须不小于1.20.0。

Parameters

  • x:array_like
    从中创建滑动窗口视图的阵列。

  • window_shape:int or tuple of int
    参与滑动窗口的每个轴上的窗口大小。如果某个轴不存在,则必须具有与输入数阵列尺寸相同的长度。

  • axis:int or tuple of int, optional
    作用于滑动窗口的一个或多个轴。默认情况下,滑动窗口应用于所有轴,window_shape[i]将指x的i轴。如果axis是int的元组,那么window_shape[i]将指x的i轴。单整数i被视为元组(i,)。

  • subok:bool, optional
    如果为 True,子类将传递,否则返回的阵列将被迫为基本级数组(默认值)。

  • writeable:bool, optional
    当True时,允许写回视图。默认值是False的,因为应该谨慎使用:返回的视图多次包含相同的内存位置,因此写到一个位置会导致其他位置更改。

  • Returns:viewndarray
    滑动阵列的窗口视图。滑动窗口尺寸在末端插入,原始尺寸根据滑动窗口的大小进行修剪。即,每个条目比相应的窗口大小减少一个。

一个二维滑动窗口的例子:

In [1]: import numpy as np

In [2]: x = np.arange(20).reshape(4,5)

In [3]: x
Out[3]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])

In [5]: v = np.lib.stride_tricks.sliding_window_view(x,(2,3))

In [6]: v
Out[6]: 
array([[[[ 0,  1,  2],
         [ 5,  6,  7]],

        [[ 1,  2,  3],
         [ 6,  7,  8]],

        [[ 2,  3,  4],
         [ 7,  8,  9]]],


       [[[ 5,  6,  7],
         [10, 11, 12]],

        [[ 6,  7,  8],
         [11, 12, 13]],

        [[ 7,  8,  9],
         [12, 13, 14]]],


       [[[10, 11, 12],
         [15, 16, 17]],

        [[11, 12, 13],
         [16, 17, 18]],

        [[12, 13, 14],
         [17, 18, 19]]]])
ModuleNotFoundError: No module named 'py_pkg_1'错误是由于无法找到名为'py_pkg_1'的Python模块引起的。这可能是由于以下几个原因导致的: 1. 该模块尚未安装:请确保你已经正确安装了'py_pkg_1'模块。你可以使用pip命令来安装该模块。例如,运行`pip install py_pkg_1`来安装。 2. 模块的安装路径不正确:如果你已经安装了'py_pkg_1'模块,但仍然出现了该错误,那么可能是因为模块的安装路径不在Python解释器的搜索路径中。你可以通过`pip show py_pkg_1`命令来查看该模块的安装路径,并确保路径正确。 3. Python环境配置问题:在某些情况下,Python的环境配置可能会导致模块无法被正确加载。你可以尝试重新配置Python环境,确保正确设置PYTHONPATH等环境变量。 请注意,在提供的引用内容中,并没有相关信息表明'py_pkg_1'是一个实际存在的Python模块。所以这只是一个例子,具体情况可能因实际代码和环境而异。如果你需要更具体的帮助,请提供更多详细信息,例如模块的实际名称、安装方式、代码片段等。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [解决ModuleNotFoundError: No module named ‘pkg_resources](https://blog.csdn.net/witton/article/details/119904922)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [使用pyinstaller打包exe文件及问题解决.docx](https://download.csdn.net/download/GHenry/12419322)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陨星落云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值