1.题目描述
给出方程式 A / B = k, 其中 A 和 B 均为代表字符串的变量, k 是一个浮点型数字。根据已知方程式求解问题,并返回计算结果。如果结果不存在,则返回 -1.0。
示例 :
给定 a / b = 2.0, b / c = 3.0
问题: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
返回 [6.0, 0.5, -1.0, 1.0, -1.0 ]输入为: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries(方程式,方程式结果,问题方程式), 其中 equations.size() == values.size(),即方程式的长度与方程式结果长度相等(程式与结果一一对应),并且结果值均为正数。以上为方程式的描述。 返回vector<double>类型。
基于上述例子,输入如下:
equations(方程式) = [ ["a", "b"], ["b", "c"] ],
values(方程式结果) = [2.0, 3.0],
queries(问题方程式) = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
输入总是有效的。你可以假设除法运算中不会出现除数为0的情况,且不存在任何矛盾的结果。
2.解题思路
个人感觉难度应该设为hard比较合理。
构造一个双向图,比如a/b=2.0,那么a->b权重2.0,b->a权重0.5,要查的时候就用BFS遍历,每到一个新节点,就乘以权重,找到目标节点时返回当前值即可。
首先,我们分析一下要怎么判断。没有出现过的字母直接返回-1.0,然后一样的字母直接返回1.0。这时就可以计算两点距离了。
作者:tomwillow
链接:https://leetcode-cn.com/problems/evaluate-division/solution/bfsyi-ci-gao-ding-shi-jian-100-by-tomwillow/
3.代码实现
class Solution(object):
def calcEquation(self, equations, values, queries):
"""
:type equations: List[List[str]]
:type values: List[float]
:type queries: List[List[str]]
:rtype: List[float]
"""
unordered_map={}
n = len(equations)
# Python字典中的值为列表或字典的构造方法
# dic.setdefault('a',[]).append(1)
for i in range(n):
unordered_map.setdefault(equations[i][0],[]).append((equations[i][1],values[i]))
unordered_map.setdefault(equations[i][1],[]).append((equations[i][0],1.0/values[i]))
size = len(unordered_map)
res = []
for querie in queries:
vis = set()
res.append(self.getDist(querie[0], querie[1], unordered_map, vis))
return res
def getDist(self, a, b,unordered_map, vis):
if a not in unordered_map or b not in unordered_map:
return -1.0
if a == b:
return 1.0
Q=[]
Q.append((a,1.0))
vis.add(a)
ret = -1.0
while Q:
t = Q.pop()
vis.add(t[0])
if t[0] == b:
ret = t[1]
break
for pr in unordered_map[t[0]]:
c = pr[0]
val = pr[1]
if c not in vis:
Q.append((c, t[1] * val))
return ret