数学
小__Q
宁静致远,淡泊明志
展开
-
数学-线性代数-行列式
前言:为了处理力学等方面的问题,引入了计算两个向量垂直的向量。这就是向量叉乘的来源,为了更好的研究叉乘的特性与运算,然后又引入了行列式的概念。...原创 2018-11-26 09:27:23 · 207 阅读 · 0 评论 -
数学-线性代数-特征值,特征向量
前言:令T: V -> V 为作用在有限维线形空间V上的一个线形变换。T为V的坐标轴无关的性质叫做T的内蕴(intrinsic)性质。原创 2018-11-26 09:40:32 · 646 阅读 · 0 评论 -
数学-线性代数-线性变换
系统深入地研究定义域与值域都是线形空间的子集的函数是数学分析的基本目标之一,我们称这样的函数为变换,映射或算子。设W,V为两个集合,我们用记号:T: V -> W 表示T是一个定义域为V且值域在W中的函数。对V中任意x,我们称W中的元素T(x) 为x在T作用下的象(image),并说T将x映射为T(x)。定义域V的象T(x)称为T的值域(range)。零化空间*值域集合T(V)是W的子...原创 2018-11-26 10:06:48 · 2209 阅读 · 0 评论 -
数学-线性代数-欧式空间中线形变换的特征值
前言:本文叙述的是在欧式空间上的线性变换的特征值与特征向量的性质,欧式空间就是定义了一个内积的线性空间。特征值与内积设E为一个欧式空间,V为E的子空间,T:V→\to→E为一个线性变换,λ\lambdaλ是T的一个特征值,x是属于λ\lambdaλ的特征向量,则λ=(T(x),x)(x,x)\lambda =\frac{(T(x),x)}{(x,x)} λ=(x,x)(T(x),x)He...原创 2018-11-26 15:49:58 · 864 阅读 · 0 评论