二叉搜索树

二叉搜索树(BST)是一种特殊类型的二叉树,其每个节点的左子树上的所有节点值小于该节点,而右子树上的节点值大于该节点。查询、插入和删除是BST的主要操作。查询时从根节点开始,根据节点值大小决定方向;插入操作会找到合适位置新增节点;删除操作则涉及三种情况,包括无子节点、单子节点和双子节点的情况。二叉搜索树在最佳情况下提供高效的查找性能,但在最坏情况下(退化为链表)性能下降至O(n)。
摘要由CSDN通过智能技术生成

什么是二叉搜索树

        二叉搜索树(BST:Binary Search Tree)基于二叉树,改善二叉树节点查找效率。

  •  对于任意节点x,其左子树任意节点的值小于x的值;
  •  对于任意节点x,其右子树任意节点的值大于x的值;
  • 任意节点的左右子树都为二叉搜索树;
  • 最坏情况下查询复杂度与树的高度成正比,如图(2)的极端情况,二叉搜索树的查询复杂度为 Olog2𝑛~𝑂(𝑛)。

       图(1)

 图(2)

 查询

        从树根开始查找,沿着树中的一条简单路径向下进行。对于遇到的每个节点X,比较关键字k与x.key,二叉搜索树的性质保证逻辑的正确。

  •        x.key ==  k,查找终止;
  •        x.key > k,对x的左子树继续进行递归查找;
  •        x.key < k,对x的右子树继续进行递归查找;

插入

        插入和删除操作会引起由二叉搜索树表示的动态集合的变化,需要通过修改数据结构来反映此变化,并且需要保持二叉搜索树性质的成立。

        插入一个新的节点需要添加一个新的叶子节点,从根节点起自顶向下遍历每一个节点,通过比较的方式来确定新节点的位置。

删除

        当从一棵二叉搜索树删除一个节点Z时,有以下三种情况:

  • 如果Z没有孩子节点,那么只是将Z删除,并修改其父节点,用NIL作为孩子节点来代替Z;
  • 如果Z只有一个孩子节点,那么将这个孩子节点提升到Z的位置上,用Z的孩子节点来代替Z;
  • 如果Z有两个孩子节点,那么找Z的后继y(在Z的右子树),并让y占据树中z的位置。z原来的右子树部分成为y的新的右子树,并且z的左子树成为y的新的左子树。
  • 如果y不是z的右孩子,y位于z的右子树,先用y的右孩子替换y,然后再用y替换z。

图(3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值