什么是二叉搜索树
二叉搜索树(BST:Binary Search Tree)基于二叉树,改善二叉树节点查找效率。
- 对于任意节点x,其左子树任意节点的值小于x的值;
- 对于任意节点x,其右子树任意节点的值大于x的值;
- 任意节点的左右子树都为二叉搜索树;
- 最坏情况下查询复杂度与树的高度成正比,如图(2)的极端情况,二叉搜索树的查询复杂度为 Olog2𝑛~𝑂(𝑛)。
图(1)
图(2)
查询
从树根开始查找,沿着树中的一条简单路径向下进行。对于遇到的每个节点X,比较关键字k与x.key,二叉搜索树的性质保证逻辑的正确。
- x.key == k,查找终止;
- x.key > k,对x的左子树继续进行递归查找;
- x.key < k,对x的右子树继续进行递归查找;
插入
插入和删除操作会引起由二叉搜索树表示的动态集合的变化,需要通过修改数据结构来反映此变化,并且需要保持二叉搜索树性质的成立。
插入一个新的节点需要添加一个新的叶子节点,从根节点起自顶向下遍历每一个节点,通过比较的方式来确定新节点的位置。
删除
当从一棵二叉搜索树删除一个节点Z时,有以下三种情况:
- 如果Z没有孩子节点,那么只是将Z删除,并修改其父节点,用NIL作为孩子节点来代替Z;
- 如果Z只有一个孩子节点,那么将这个孩子节点提升到Z的位置上,用Z的孩子节点来代替Z;
- 如果Z有两个孩子节点,那么找Z的后继y(在Z的右子树),并让y占据树中z的位置。z原来的右子树部分成为y的新的右子树,并且z的左子树成为y的新的左子树。
- 如果y不是z的右孩子,y位于z的右子树,先用y的右孩子替换y,然后再用y替换z。
图(3)