机器学习入门笔记---数学基础知识总结

这篇博客总结了机器学习入门所需的数学基础知识,包括导数定义、平面曲线的切线和法线、高阶导数公式、泰勒公式、微分中值定理以及函数的单调性和凹凸性判断等。对于初学者来说,了解这些概念有助于更好地掌握机器学习的理论基础。
摘要由CSDN通过智能技术生成

数学基础知识

数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。

下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~

高等数学

1.导数定义:

导数和微分的概念

f ′ ( x 0 ) = lim ⁡ Δ x → 0   f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'({ {x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0) (1)

或者:

f ′ ( x 0 ) = lim ⁡ x → x 0   f ( x ) − f ( x 0 ) x − x 0 f'({ {x}_{0}})=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} f(x0)=xx0limxx0f(x)f(x0) (2)

2.左右导数导数的几何意义和物理意义

函数 f ( x ) f(x) f(x) x 0 x_0 x0处的左、右导数分别定义为:

左导数: f ′ − ( x 0 ) = lim ⁡ Δ x → 0 −   f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 −   f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) { { {f}'}_{-}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{-}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}},(x={ {x}_{0}}+\Delta x) f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0),(x=x0+Δx)

右导数: f ′ + ( x 0 ) = lim ⁡ Δ x → 0 +   f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 +   f ( x ) − f ( x 0 ) x − x 0 { { {f}'}_{+}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{+}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)=xx0+limxx0f(x)f(x0)

3.函数的可导性与连续性之间的关系

Th1: 函数 f ( x ) f(x) f(x) x 0 x_0 x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_0 x0处可导

Th2: 若函数在点 x 0 x_0 x0处可导,则 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续,反之则不成立。即函数连续不一定可导。

Th3: f ′ ( x 0 ) {f}'({ {x}_{0}}) f(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow { { {f}'}_{-}}({ {x}_{0}})={ { {f}'}_{+}}({ {x}_{0}}) f(x0)=f+(x0)

4.平面曲线的切线和法线

切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{ {y}_{0}}=f'({ {x}_{0}})(x-{ {x}_{0}}) yy0=f(x0)(xx0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{ {y}_{0}}=-\frac{1}{f'({ {x}_{0}})}(x-{ {x}_{0}}),f'({ {x}_{0}})\ne 0 yy0=f(x0)1(xx0),f(x0)=0

5.四则运算法则
设函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x)v=v(x)]在点 x x x可导则
(1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v{)}'={u}'\pm {v}' (u±v)=u±v d ( u ± v ) = d u ± d v d(u\pm v)=du\pm dv d(u±v)=du±dv
(2) ( u v ) ′ = u v ′ + v u ′ (uv{)}'=u{v}'+v{u}' (uv)=uv+vu d ( u v ) = u d v + v d u d(uv)=udv+vdu d(uv)=udv+vdu
(3) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{ { {v}^{2}}}(v\ne 0) (vu)=v2vuuv(v=0) d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{ { {v}^{2}}} d(vu)=v2vduudv

6.基本导数与微分表
(1) y = c y=c y=c(常数) y ′ = 0 {y}'=0 y=0 d y = 0 dy=0 dy=0
(2) y = x α y={ {x}^{\alpha }} y=xα( α \alpha α为实数) y ′ = α x α − 1 {y}'=\alpha { {x}^{\alpha -1}} y=αxα1 d y = α x α − 1 d x dy=\alpha { {x}^{\alpha -1}}dx dy=αxα1dx
(3) y = a x y={ {a}^{x}} y=ax y ′ = a x ln ⁡ a {y}'={ {a}^{x}}\ln a y=axlna d y = a x ln ⁡ a d x dy={ {a}^{x}}\ln adx dy=axlnadx
特例: ( e x ) ′ = e x ({ { {e}}^{x}}{)}'={ { {e}}^{x}} (ex)=ex d ( e x ) = e x d x d({ { {e}}^{x}})={ { {e}}^{x}}dx d(ex)=exdx

(4) y = log ⁡ a x y={ {\log }_{a}}x y=logax y ′ = 1 x ln ⁡ a {y}'=\frac{1}{x\ln a} y=xlna1

d y = 1 x ln ⁡ a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln ⁡ x y=\ln x y=lnx ( ln ⁡ x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)=x1 d ( ln ⁡ x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx

(5) y = sin ⁡ x y=\sin x y=sinx

y ′ = cos ⁡ x {y}'=\cos x y=cosx d ( sin ⁡ x ) = cos ⁡ x d x d(\sin x)=\cos xdx d(sinx)=cosxdx

(6) y = cos ⁡ x y=\cos x y=cosx

y ′ = − sin ⁡ x {y}'=-\sin x y=sinx d ( cos ⁡ x ) = − sin ⁡ x d x d(\cos x)=-\sin xdx d(cosx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值