数学基础知识
数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。
下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~
高等数学
1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'({ {x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0) (1)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'({ {x}_{0}})=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} f′(x0)=x→x0limx−x0f(x)−f(x0) (2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左、右导数分别定义为:
左导数: f ′ − ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) { { {f}'}_{-}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{-}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}},(x={ {x}_{0}}+\Delta x) f′−(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数: f ′ + ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 { { {f}'}_{+}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{+}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} f′+(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 x 0 x_0 x0处可导
Th2: 若函数在点 x 0 x_0 x0处可导,则 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续,反之则不成立。即函数连续不一定可导。
Th3: f ′ ( x 0 ) {f}'({ {x}_{0}}) f′(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow { { {f}'}_{-}}({ {x}_{0}})={ { {f}'}_{+}}({ {x}_{0}}) ⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{
{y}_{0}}=f'({
{x}_{0}})(x-{
{x}_{0}}) y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{
{y}_{0}}=-\frac{1}{f'({
{x}_{0}})}(x-{
{x}_{0}}),f'({
{x}_{0}})\ne 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x)]在点 x x x可导则
(1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v{)}'={u}'\pm {v}' (u±v)′=u′±v′ d ( u ± v ) = d u ± d v d(u\pm v)=du\pm dv d(u±v)=du±dv
(2) ( u v ) ′ = u v ′ + v u ′ (uv{)}'=u{v}'+v{u}' (uv)′=uv′+vu′ d ( u v ) = u d v + v d u d(uv)=udv+vdu d(uv)=udv+vdu
(3) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{
{
{v}^{2}}}(v\ne 0) (vu)′=v2vu′−uv′(v=0) d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{
{
{v}^{2}}} d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y = c y=c y=c(常数) y ′ = 0 {y}'=0 y′=0 d y = 0 dy=0 dy=0
(2) y = x α y={
{x}^{\alpha }} y=xα( α \alpha α为实数) y ′ = α x α − 1 {y}'=\alpha {
{x}^{\alpha -1}} y′=αxα−1 d y = α x α − 1 d x dy=\alpha {
{x}^{\alpha -1}}dx dy=αxα−1dx
(3) y = a x y={
{a}^{x}} y=ax y ′ = a x ln a {y}'={
{a}^{x}}\ln a y′=axlna d y = a x ln a d x dy={
{a}^{x}}\ln adx dy=axlnadx
特例: ( e x ) ′ = e x ({
{
{e}}^{x}}{)}'={
{
{e}}^{x}} (ex)′=ex d ( e x ) = e x d x d({
{
{e}}^{x}})={
{
{e}}^{x}}dx d(ex)=exdx
(4) y = log a x y={ {\log }_{a}}x y=logax y ′ = 1 x ln a {y}'=\frac{1}{x\ln a} y′=xlna1
d y = 1 x ln a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln x y=\ln x y=lnx ( ln x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)′=x1 d ( ln x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx
(5) y = sin x y=\sin x y=sinx
y ′ = cos x {y}'=\cos x y′=cosx d ( sin x ) = cos x d x d(\sin x)=\cos xdx d(sinx)=cosxdx
(6) y = cos x y=\cos x y=cosx
y ′ = − sin x {y}'=-\sin x y′=−sinx d ( cos x ) = − sin x d x d(\cos x)=-\sin xdx d(cosx)