八皇后问题是在8*8的国际象棋的棋盘上放置8个皇后,有多少种不同的放置方法,要求它们互相都不冲突(冲突是指在某一行或者某一列或者某一条斜线上出现两个皇后,因为这两个皇后可以互相吃掉对方)。其中行号和列号都从0开始。现在前三行(0~2行)每行一个皇后已经放置好的情况下,第3行的皇后想要放在给定的列,需要你编一个程序判断它是否与前三行的皇后冲突。
输入:
首先输入3行8列数据(0~2行,0~7列),1表示有皇后,0表示没有皇后
然后输入第3行要摆放的皇后的列号。
输出:
第3行所给的列号处如果能放皇后,则输出Yes换行,不可以的话输出No,注意要有回车。
输入样例:
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1
输出样例:
Yes
#include<iostream>
using namespace std;
int main() {
int a[5][20] = {0};
int i;
for (i = 3; i <= 10; i++)
cin >> a[1][i];
for (i = 3; i <= 10; i++)
cin >> a[2][i];
for (i = 3; i <= 10; i++)
cin >> a[3][i];
int n;
cin >> n;
int d;
d = n + 3;
a[4][d] = 1;
int f=1;
int sum=0;
for (i = 3; i <= 10; i++) {
sum = sum + a[4][i];
}
if (sum != 1) {
f = 0;
//return 0;
//system("pause");
}
int c = 0;
for (i = 1; i <= 3; i++) {
c = c + a[i][d];
}
if (c != 0) {
f = 0;
//return 0;
//system("pause");
}
for (i = 1; i <=3; i++) {
if (a[4 - i][d - i]==1||a[4 - i][d + i] == 1) {
f = 0;
break;
}
}
if(f==1)
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}