高位十字星收盘什么意思?高位十字星缩量是什么?

小编我的一位炒股的老朋友,已经算是较有经验的股民了,我向他请教了一些问题,关于高位十字星收盘什么意思和分析高位十字星缩量。
  高位十字星收盘什么意思?
  我在 QR社区平台上了解到,高位十字星是指在高位股价形成了高位十字星的走势,收盘价等于开盘价,当天的股价涨跌两难。表明了这一天多空力量的平衡,说明了接下来就是寻找突破方向的时候的,如果股价是向上的,那么这天的高位十字星处于股价的相对低位,如果是选择向下突破的,那么这一天的高位十字星处于股价的相对高位。
  从K线来看,高位十字星即为收盘价等于开盘价,但从市场的内部结构来看,庄家在高位做高位十字星,意味着做空的目的比较明确。 在QR量化投资社区中学到,股价拉出上影线,是因为很多散户在坚决的做多。主力就在上方慢慢的将自己的获利筹码出了。原来高度集中的筹码就分散给了散户,当这种股价筹码由集中向分散进行到一定程度的时候,市场由强势转为弱势。量变引起质变,然后该股就慢慢开始做头部了。
  高位十字星是选择方向的时机,有一个横向震荡的时间,所以出货时间比头部长阴线要多一些。我们通常希望通过K线找出头部,但仅仅只是一根K线我们无法判定它就是头部,因为它也有可能就出现到底部或腰部等等。因此我们应结合其它头部的信号来进行判断。介绍完高位十字星收盘什么意思我们再来看看高位十字星缩量。
  高位十字星缩量。
  高位十字星缩量上升是典型的庄股行情。许多庄股在底部明显放量后,进人上升通道,展荡上行,股价越上升,成交量越萎缩,这就是典型的高位十字星缩量上行。 宽客相对论技术指出这种走势说明,庄家在底部时通过吸筹和洗盘,已经将筹码高度集中,高度控盘。因而股价越往上升,成交量越小。
  高位十字星缩量横盘是缩量盘整的一种典型例子,个股经过一段时间的上涨之后,在高位开始横盘,K线图上小阴小阳交错出现,而成交量却比前期大幅度萎缩,均线不断上移,与股价越来越接近。短线实战表明,这种高位十字星缩量横盘的股票,主力仓位十分重,几乎没有出货的机会。横盘是在等待拉升的时机,短线可放心持股。
  高位十字星缩量回调。一般而言,个股启动拉升前,都会有一次打压,这种高位十字星缩量回调是主力拉升前的最后一次洗盘,是短线介入的最佳时机。

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
### MATLAB 中 `var` 函数的含义和用法 #### 含义 在统计学中,方差(Variance)用于衡量一组数值与其平均数之间的离散程度。MATLAB 提供了内置函数 `var` 来计算数据集的样本方差[^2]。 #### 基本语法 最简单的调用方式如下: ```matlab v = var(X); ``` 这里 `X` 可以是一个向量或矩阵。如果 `X` 是一个向量,则返回其方差;如果是矩阵,则按列计算每一列的方差并返回这些值组成的行向量。 #### 参数说明 可以指定第二个参数来调整自由度,默认情况下使用 n-1 的无偏估计形式(n 表示观测数量)。当设置为 1 时采用有偏估计即除以 n: ```matlab v = var(X, w); % w=0 或者省略表示无偏估计; w=1 表示有偏估计 ``` 对于多维数组还可以通过第三个参数指明沿哪个维度求解: ```matlab v = var(X, w, dim); % 沿dim维度操作 ``` 例如给定三维数组 X 并希望沿着第二维度计算方差可写成: ```matlab v = var(X, [], 2); ``` 这会得到一个新的二维数组 v ,其中每个元素代表原数组对应位置上所有层面上的数据所构成的一组序列的方差。 #### 实际应用案例 考虑下面的例子,在实际数据分析过程中经常遇到需要评估某段时间内股票价格波动情况的任务。此时就可以利用 `var` 函数快速获得这段时间内的价格变动幅度的信息。 假设有一个包含每日收盘价的时间序列 vector P : ```matlab P = [79.43, 80.65, 81.23, ... ]; % 这里只列举了一部分数据点作为例子 daily_returns = diff(P)./P(1:end-1)*100; price_variance = var(daily_returns); disp(['The variance of daily returns is ', num2str(price_variance)]); ``` 上述代码片段先计算相邻两天收益率的变化百分比形成新的时间序列 daily_returns ,再对该序列求得日回报率的标准差 price_variance 。最后打印输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值