HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
思路:
- 一开始考虑的构建积分图的方法
- 取最大值 此题不适用 要考虑中间的子集的和
- 所以这里再计算积分图的同时需要判断tmpSum是否大于0,
- 如果小于等于零就把tmpSum置零后重新统计积分图
# -*- coding:utf-8 -*-
# -*- coding:utf-8 -*-
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
# 算法的时间复杂度为o(n)
if array == []:
return []
tmpSum = 0
tmpList = []
for i in array:
tmpSum += i
tmpList.append(tmpSum)
if tmpSum > 0:
continue
else:
tmpSum = 0
return max(tmpList)