以VGG为例,分析深度网络的计算量和参数量

本文以VGG为例,详细分析深度网络的计算量和参数量。通过VGG-16的结构,探讨卷积层和全连接层的复杂度,揭示深度学习模型的空间与时间复杂度特点。
摘要由CSDN通过智能技术生成

摘要:我第一次读到ResNet时,完全不敢相信152层的残差网络,竟然在时间复杂度(计算量)上和16层的VGG是一样大的。当然,对于初学者而言,直接分析ResNet的时间复杂度是有点难度的。这篇文章我将以VGG为例,介绍深度网络的复杂度计算方法。掌握这些计算方法后,再去看Inception、ResNet、MobileNet、SqueezeNet等论文,你就能明白这些网络结构的精妙之处。

关键字:深度网络, VGG, 复杂度分析, 计算量, 参数量


本文是我旧博客中的博文,在CSDN图片显示不正常,请移步旧博客查看:https://imlogm.github.io/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/vgg-complexity/


1. VGG的结构

VGG的结构如下图所示:

图1 不同VGG网络的结构

我们选取其中的VGG-16(上图中的D列)来进行计算量和参数量的分析。VGG-16每个卷积操作后,图像大小变化情况如下图所示:

图2 VGG-16的结构

2. 卷积操作的计算量和参数量

对于卷积操作的计算量(时间复杂度)和参数量(空间复杂度)可以看这篇文章:卷积神经网络的复杂度分析-Michael Yuan的文章

注意,这些复杂度计算都是估算,并非精确值。

我们以VGG-16的第一层卷积为例:输入图像224×224×3,输出224×224×64,卷积核大小3×3。

计算量:
T i m e s ≈ 224 × 224 × 3 × 3 × 3 × 64 = 8.7 × 1 0 7 Times\approx 224\times 224\times 3\times 3\times 3\times 64=8.7\times 10^7 Times224×224×3×3×3×64=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值