监督学习下的判别式模型和生成式模型

监督学习中的模型分为生成模型和判别模型。生成模型通过学习联合概率分布P(X,Y)来预测条件概率P(Y|X),如朴素贝叶斯和隐马尔可夫模型,对数据量需求较大且收敛速度快。判别模型直接学习决策函数f(X)或P(Y|X),如k近邻、逻辑回归和支持向量机,对数据量要求不严,学习准确率高且能简化问题。" 91631319,8619417,大数据:非相关数据的相关性探索,"['大数据', '编程语言', 'hadoop', '风险管理']
摘要由CSDN通过智能技术生成

(一) 、监督学习下的判别式和生成式模型

监督学习的任务就是学习一个模型,应用这一模型,对给定特征的的输入样本,预测样本相应的输出。这个模型的一般形式为决策函数:Y=f(X)或者条件概率分布:P(Y|X)

  1. 决策函数Y=f(X):输入一个特征为X的样本,模型输出一个Y,这个Y与一个阈值比较,根据比较结果判定X属于哪个类别。例如二分类(Y1和Y2)问题,如果Y大于阈值,特征为X的样本就属于类Y1,如果Y小于阈值就属于类Y2。通过决策函数的输出直接就能得到特征为X的样本对应的类别了。

  2. 条件概率分布P(Y|X):输入一个特征为X的样本,模型通过比较它属于的所有可能类别的概率,然后输出概率最大的那个,作为特征为X的样本所属的类别。例如二分类问题,如果模型计算出P(Y1|X) > P(Y2|X),那么就认为特征为X的样本是属于Y1类的。

监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。

  1. 生成方法:先由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的
    模型,即生成模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值