(一) 、监督学习下的判别式和生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定特征的的输入样本,预测样本相应的输出。这个模型的一般形式为决策函数:Y=f(X)或者条件概率分布:P(Y|X)
-
决策函数Y=f(X):输入一个特征为X的样本,模型输出一个Y,这个Y与一个阈值比较,根据比较结果判定X属于哪个类别。例如二分类(Y1和Y2)问题,如果Y大于阈值,特征为X的样本就属于类Y1,如果Y小于阈值就属于类Y2。通过决策函数的输出直接就能得到特征为X的样本对应的类别了。
-
条件概率分布P(Y|X):输入一个特征为X的样本,模型通过比较它属于的所有可能类别的概率,然后输出概率最大的那个,作为特征为X的样本所属的类别。例如二分类问题,如果模型计算出P(Y1|X) > P(Y2|X),那么就认为特征为X的样本是属于Y1类的。
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model)。
-
生成方法:先由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的
模型,即生成模型