哈密尔顿
为了纪念四元数的发明者哈密尔顿,爱尔兰于1943年11月15日发行了下面这张邮票:
哈密尔顿简直是个天才,哈密尔顿从小到进入大学之前没有进过学校读书,他的教育是靠叔父传授以及自学。他找到了法国数学家克莱罗(Clairaut)写的《代数基础》一书,很快就学会了代数,然后看牛顿写的《数理原理》。在16岁时就读法国著名数学家和天文学家拉普拉斯(Laplace)五册的《天体力学》,他发现拉普拉斯关于力的平行四边形法则的证明的错误.
四元数的概念是由爱尔兰数学家Sir William Rowan Hamilton发明的(1843年,都柏林)。Hamilton当时正和他的妻子前往爱尔兰皇家研究院,当他从Brougham桥通过皇家运河时,他领悟到了一个激动人心的东西,并立刻把它刻在桥的一个石头上:

关于哈密尔顿的介绍可以看这篇博客: 邮票上的数学家(10)哈密尔顿(爱尔兰)
四元数旋转推导过程
1.基本概念
(1) 四元数的一般形式如下:
q=q0+q1i+q2j+q3k
q
=
q
0
+
q
1
i
+
q
2
j
+
q
3
k
(2) 单位四元数:满足四元数的模为1,即
q02+q12+q22+q32=1
q
0
2
+
q
1
2
+
q
2
2
+
q
3
2
=
1
(3) 四元数的三角形式:
q=cosθ2+u⃗ sinθ2
q
=
c
o
s
θ
2
+
u
→
s
i
n
θ
2
(4)共轭四元数:
q∗=q0−q1i−q2j−q3k
q
∗
=
q
0
−
q
1
i
−
q
2
j
−
q
3
k
(5) 纯四元数:
q=q1i+q2j+q3k
q
=
q
1
i
+
q
2
j
+
q
3
k
(6)四元数与空间旋转:
其中:
q q :单位四元数
:四元数的逆,对于单位四元数, q∗=q−1 q ∗ = q − 1
p p :纯四元数
2. 欧拉角的万向锁问题
先看一个简单的欧拉旋转,如下图所示:欧拉旋转需要先确定旋转顺序,我们可以定义X-Y-Z的顺序(总共有12种旋转顺序),那么什么是万向锁呢,我们可以用手机在桌子上进行旋转,以手机的正面为xy平面,以手机的厚度的方向作为z轴,我们先绕x转一个角度,然后再绕y轴旋转90度,我们会发现一个问题,当我们再绕z轴旋转一个角度,效果等同于我开始绕x轴旋转另外一个角度,再绕y轴旋转90度就行了.
我们的欧拉旋转只能表示二维空间了,这是解我们的微分方程会出现退化现象,造成我们的微分方程无法解的情况。这样说似乎还是比较模糊,那么我们举一个例子:
如图所示:
XwYwZw
X
w
Y
w
Z
w
是世界坐标系,
XiYiZi
X
i
Y
i
Z
i
是机体坐标系,我们先绕
Xi
X
i
轴旋转
30∘
30
∘
,再绕
Yi
Y
i
旋转
90∘
90
∘
,如下图所示:
此时我们的
Xw
X
w
和
Zi
Z
i
在同一直线上,最后我们再绕
Zi
Z
i
旋转
40∘
40
∘
,如下图所示:
我们会发现一个问题,无论我们怎么旋转,我们的坐标都是(30,90,z),也就是绕z轴的旋转角度我们无法衡量的,这也就是我们的万向锁问题。
3. 四元数推导
复数旋转
首先我们看一个复数
p=a+bi
p
=
a
+
b
i
在复平面的表示:
现在我们将它旋转角度
θ
θ
,先定义另外一个复数
q=cosθ+isinθ
q
=
c
o
s
θ
+
i
s
i
n
θ
,我们发现,复数的乘法表示了一种旋转:
这个复数恰好就是 p p 旋转角度后的值:

三维复数旋转
我们看到了二维复数乘法可以表示旋转,那么三维空间呢。按照举一反三的思想,我们会想到再增加一个虚数作为第三个维度,这个就要涉及到我们的向量的叉乘,如下图所示:
向量叉乘的结果是两个向量构成平面的垂直向量,那么我们定义两个个三维的复数:
其中 i2=j2=−1 i 2 = j 2 = − 1 ,我们类似的进行复数的乘法,得到:
我们会发现,如果没有 ij和ji i j 和 j i 这两项,我们三维的复数旋转也就没问题,那该如何处理呢?
四元数旋转
哈密尔顿引入四维的四元数:
q=q0+q1i+q2j+q3k,其中i2=j2=k2=−1
q
=
q
0
+
q
1
i
+
q
2
j
+
q
3
k
,
其
中
i
2
=
j
2
=
k
2
=
−
1
,根据向量的叉乘可以定义下列一些关系:
可以得到下列关系:
为了方便理解,我们将四元数写成向量的形式: q=[s,v⃗ ] q = [ s , v → ] ,我们可以理解为 s s 为实部,向量表示的就是三维空间,下面我们看一下四元数的乘法:
由于我们研究的是三维空间,因此我们可以令 qa q a 为一个纯四元数,即 qa=[0,a⃗ ] q a = [ 0 , a → ] .则可以得到:
从上面可以看到,一个普通的四元数是无法将三维空间映射到三维空间的,我们令向量点乘的部分为零,此时,一个纯四元数就可以旋转为另一个纯四元数.为了表现出旋转,这里我们用四元数的三角表示方式: qb=[cosθ,sinθb⃗ ] q b = [ c o s θ , s i n θ b → ] ,令 a⃗ ⋅b⃗ =0 a → ⋅ b → = 0 ,则有:
我们没有对向量 b⃗ b → 做任何限制,下面来用一个例子说明应当对向量 b⃗ b → 做什么限制.
令 p=[0,2i],q=[2√2,2√2b⃗ ] p = [ 0 , 2 i ] , q = [ 2 2 , 2 2 b → ] ,考虑到 a⃗ ⋅b⃗ =0 a → ⋅ b → = 0 ,令 b⃗ =|b⃗ |k b → = | b → | k ,则将 p p 旋转后得到:
旋转之前,纯四元数 p p 的模长为,旋转过后,纯四元数 p′ p ′ 的模长 |p′|=2|b⃗ | | p ′ | = 2 | b → | ,所以我们要给旋转四元数又加上一个约束:四元数 q q 的模长为1,即是一个单位四元数.
但是上面的旋转是有缺点的,因为其限制了我们的旋转轴和需要被旋转的四元数必须是垂直的(
a⃗ ⋅b⃗ =0
a
→
⋅
b
→
=
0
),而不能达到任意的旋转.这时,聪明的哈密尔顿发现,一个四元数会把一个纯四元数拉到四维空间,但它的共轭又会把这个四维的空间拉回到三维空间.我们以一个简单的例子来说明这个问题:
旋转之后的四元数 Rq(p) R q ( p ) :
这里需要注意的一点是,因为经过两次的旋转,所以旋转的角度是 2θ 2 θ ,这就是为什么我们常常看到的旋转四元数是一下形式: