技术的未来:2025 年需要学习的五大技能
技术的未来
展望 2025 年,很明显技术进步的速度正在迅速增加。随着人工智能、量子计算和沉浸式技术的进步,了解这些新兴趋势对于任何希望在就业市场中保持相关性的人来说都至关重要。这篇博文将介绍 2025 年最值得学习的五项技术,并提供更多信息的链接。当你充分掌握这些技能时,你就更有可能被视为处于技术职业阶梯的顶端。
🚀⭕非会员请阅读📜。📖
1. 多模态人工智能开发
什么是多模式人工智能?
多模态人工智能是指能够同时处理和理解多种类型数据(例如文本、图像和音频)的系统,就像人类的大脑一样。这项技术已经应用于不同的领域,以改善客户体验并提高用户满意度。
实际应用
多模态人工智能的一个典型应用案例是宝马的创新车辆性能监控系统。该人工智能不仅监控摄像头拍摄的图像,还能监听任何可疑噪音并读取维护活动日志。结合这些数据流,它可以准确预测机械故障,从而最大限度地减少公司每年数百万美元的损失。此类应用展示了多模态人工智能如何提高各个部门的运营效率。
为什么要学习多模式人工智能?
随着科技界的巨头(例如谷歌、Facebook 和 Spotify)越来越关注多模态 AI,如果你了解它,它将增加你在就业市场的潜力。顺便说一句,斯坦福大学教授的计算机视觉课程 CS231n(计算机视觉)和实用深度学习课程 Fast.ai 对于那些对这一领域感兴趣的人来说确实是很好的起点。除此之外,多模态 AI 的转换是一项技能,可以让你获得 AI 开发人员或数据科学家等职位,在那里你可以参与更先进、更直观的系统的开发。
2. 量子就绪编程
了解量子计算
量子计算是一项突破性的技术发展,与传统计算相比已有了长足进步。量子计算机是利用量子力学解决传统计算机难以解决的问题的机器,使它们能够在短时间内处理大量数据。通过这样做,它们为编写代码、理解和改进药物开发以及解决过去难以解决的气候变化相关问题注入了新的活力。
工业应用
Moderna 等公司已经开始利用量子计算来加速疫苗研发,方法是模拟传统计算机难以处理的蛋白质折叠过程。除了加快研究速度外,量子计算还能提高安全性,以应对量子黑客的潜在网络攻击。例如,可以更轻松地执行这些分析的量子算法还可以实现以前无法实现的大型数据集分析方面的突破。
学习资源
首次学习使用量子编程时,请探索 IBM 的量子学习路径或 Microsoft 的量子开发工具包。这些资源中记录了量子算法及其应用的实践经验。此外,Qiskit 提供了一个社区驱动的门户,可通过教程和项目来学习量子编程。
为什么要学习量子计算?
各公司将加紧努力迎接量子计算机成为主流的那一天(通常称为“Q 日”),并且需要越来越多的开发人员来了解量子算法以及它们对安全和数据处理的意义。量子软件和量子研究科学家将成为抢手的职位。
3.扩展现实(XR)
什么是扩展现实?
扩展现实包括虚拟现实 (VR)、增强现实 (AR) 和混合现实 (MR)。通过将数字内容与现实世界融合,这些技术正在创建一种沉浸式环境,让我们与技术进行互动。
对行业的影响
AR 改变了人们购物的方式,尤其是家具,借助宜家的 AR,他们可以像在家里一样查看家具。客户不仅发现这是一种很棒的体验,而且它还大大降低了退货率。与沃尔玛一样,公司使用 VR 进行员工培训模拟,例如员工在安全的环境中练习真实场景。
XR 入门
要深入了解 XR 开发,请查看 Unity 的学习 XR 开发路径或 Apple 的 Vision Pro 开发课程。它们提供有关如何真正创造沉浸式体验的通用和行业特定培训。
为什么要学习XR技术?
随着各行各业(从销售到教育)的企业越来越依赖空间计算,XR 开发技能将变得非常有价值。对于想要改变客户参与策略的科技公司来说,XR 开发人员和 AR/VR 设计师等职位现在至关重要。
4.边缘人工智能和微型机器学习
定义边缘 AI
在本地(设备上)处理数据而不是依赖中央云服务器的人工智能算法被称为边缘 AI 算法。这种方法可以减少延迟,同时提供隐私,因为一些敏感数据保存在设备上。
真实世界的例子
约翰迪尔在其拖拉机中使用边缘人工智能来检测农作物疾病并进行无线操作。在这种情况下,这项创新不仅提高了农业效率,而且还将农药使用量减少了 30%,当然这对农民和消费者来说都是如此。边缘设备实时处理大量数据使制造业和农业等行业能够大幅优化其运营。
学习机会
如果您想进一步了解该领域并对边缘 AI 应用程序的开发感兴趣,我可以向您推荐的资源是 Edge Impulse 的基础课程和 Google 的 TensorFlow Lite 教程。Coursera 还提供有关微型机器学习的专业课程,涵盖为滞后设备构建有用模型的主题。随着边缘 AI 成为必需品,我们预计到 2025 年将有超过 70 亿台物联网设备,每台设备都需要高效的 AI 处理;边缘 AI 技能对于您未来的职业生涯至关重要。
为什么要学习边缘人工智能?
据预测,到 2025 年,物联网设备数量将超过 70 亿台,每台都需要高效的人工智能处理,因此边缘人工智能技能对于您未来的职业生涯至关重要。随着各行各业采用更智能的技术,边缘人工智能工程师或物联网解决方案架构师等职位的需求预计将大幅增长。
5. 高级LLM课程
什么是大型语言模型 (LLM)?
大型语言模型是一种复杂的人工智能系统,可以像人类一样学习和写作,但它们以 TB 级的数据为基础。这些模型于 2015 年发布,激发了医疗保健等各个领域的变革,它们帮助医生总结患者信息并提出全新的治疗方法。
定制的意义
梅奥诊所的 LLM 已在医疗保健公司推广,并已投入使用,这大大缩短了医疗保健专业人员的文档编写时间。通过定制模型,可以生成比通用模型更准确、更明确的输出。随着组织寻求更专业的 LLM 用途(如聊天机器人或自动报告生成),对定制这些模型的专业知识的需求正在飙升。
法学硕士学习资源
如果您想了解有关 LLM 操作的更多信息,请查看 OpenAI 的微调课程和 Hugging Face 的 LLM 工程课程。这些平台上有利用 LLM 所需的实践知识。
为什么要学习法学硕士学位?
当公司将 LLM 纳入客户服务自动化和内容生成中时,最有用的技能之一就是能够自定义 LLM — 就像编写代码一样。机器学习工程师或 NLP 专家类型的职业对于组织如何使用基于语言的 AI 技术至关重要。
结论:为未来做好准备
展望 2025 年,显然,任何想在科技行业生存的人都应该掌握这五件事:即多模态人工智能的发展、量子编程、扩展现实、边缘人工智能以及法学硕士的更高级操作。现在了解这些技能并花时间学习它们可以确保你在不断变化的就业市场中具有竞争力和相关性。