leetcode51. N皇后(参考算法笔记)

本文介绍了LeetCode第51题——N皇后问题的两种解法。首先介绍了暴力枚举的思路,该方法通过递归枚举所有可能的排列,但时间复杂度较高。接着详细讲解了回溯法(剪枝)的解决方案,利用回溯策略在遇到冲突时及时回溯,降低计算量,提高效率。
摘要由CSDN通过智能技术生成

问题描述

在这里插入图片描述
链接:leetcode 51

我的解法

在这里插入图片描述

方法一:暴力枚举

思路参考DFS(递归枚举所有排列,复杂度为O(N2))

class Solution {
public:
    bool hash[10]={false};
    int p[10]={0};
    void solve(vector<vector<string>> &result,int &n, int index){
        //边界判断
        if(index==n+1){
            //flag判断当前排列合法
            bool flag=true;
			//此处的循环意思是,检查已有的排列是不是合法
            for(int i=1;i<=n;i++){
                for(int j=i+1;j<=n;j++){
                    if(abs(i-j)==abs(p[i]-p[j])){
                        flag=false;
                    }
                }
            }
            if(flag){
                //此时p[]为n列皇后所在的行号
                vector<string> res;
                for(int j=1;j<index;j++){
                    string s;
                    for(int i=1;i<index;i++){
                        if(i!=p[j]){
                            s.append(".");
                        }else{
                            s.append("Q");
                        }
                    }
                    res.push_back(s);
                }
                
                result.push_back(res);
            }
            return;
        }
        for(int i=1;i<=n;i++){
            if(hash[i]==false){
				//此处不管i放在p[index]合不合法,先放上再说
                p[index]=i;
                hash[i]=true;
                solve(result,n,index+1);
                hash[i]=false;
            }
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        vector<vector<string>> result;
        solve(result,n,1);
        return result;
    }
};

方法二:回溯法(剪枝)

回溯法,或者说是DFS的剪枝算法,如果某种情况到某个深度时已经冲突,则直接回溯,减少计算。

class Solution {
public:
    bool hash[10]={false};
    int p[10]={0};
    void solve(vector<vector<string>> &result,int &n, int index){
        //边界判断
        if(index==n+1){
            //此时p[]为n列皇后所在的行号
            vector<string> res;
            for(int j=1;j<index;j++){
                string s;
                for(int i=1;i<index;i++){
                    if(i!=p[j]){
                        s.append(".");
                    }else{
                        s.append("Q");
                    }
                }
                res.push_back(s);
            }
            
            result.push_back(res);
            return;
        }
		//第index列,列是根据递归依次增长的,行是用hash表标记的,对角线再次判断
        for(int i=1;i<=n;i++){
            //第i行还没有皇后
            if(hash[i]==false){
                bool flag = true;
				//此处的循环意思是,如果i放在p[index]不合法,那就不放
                for(int pre=1;pre<index;pre++){
                    //第index列皇后的行号为i,第pre列皇后的行号为p[pre]
                    if(abs(index-pre)==abs(i-p[pre])){
                        flag=false;//与之前的皇后在同一对角线
                        break;
                    }
                }
                if(flag){
                    p[index]=i;
                    hash[i]=true;
                    solve(result,n,index+1);
                    hash[i]=false;
                }
            }
            
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        vector<vector<string>> result;
        solve(result,n,1);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值