人工智能与深度学习
Stefan-0704
这个作者很懒,什么都没留下…
展开
-
人工智能与深度学习概念(5)——目标检测-RCNN
目标检测简介 在现在的计算机视觉(computer vision,CV)中,图像分类、目标检测、图像分割是计算机视觉领域额三个主要任务。从图像中解析出可供计算机理解的信息,是计算机视觉邻域重点要解决的问题,深度学习模型的出现,其强大的表示能力为机器视觉提供了巨大的助力。下图就是机器理解图像的三个层次。- 目标检测(Detection):分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息(classification + localiz原创 2020-07-25 10:33:21 · 1620 阅读 · 0 评论 -
人工智能与深度学习实战(4)——口罩佩戴识别(CNN)
目标分类前言在此只做简单利用Tensorflow进行口罩识别的程序实现,不做算法讲解,具体概念请移步下面链接。https://blog.csdn.net/qq_28810395/article/details/107401125前期准备数据集(200幅戴口罩图片,200幅没戴口罩图片)如下。masknomask对于深度网络模型训练,仅仅200的训练集完全不足够进行训练,在此只是测试讲解,所以200样本集足够用于展示流程。具体代码展示搭建网络,训练模型。import os, shu原创 2020-07-18 11:23:13 · 19673 阅读 · 36 评论 -
人工智能与深度学习概念(3)——目标分类-CNN
生物视觉原理生物层面的视觉图像处理流程:1、像素信号瞳孔摄入,视网膜感光细胞传导刺激反应2、大脑皮层细胞处理,感知差异构成的边缘和方向3、神经细胞处理,提炼形状颜色等特征4、大脑进一步抽象,获得认知5、与记忆进行匹配,得到判断机器模拟生物识别,其处理流程为:1、接受图像数据2、获取图像特征3、根据特征获得类别信息4、输出目标类别图像通道 模拟眼镜视网膜的感色原理,我们所观察的色彩都是RGB三原色组成,所以一个彩色图片便可有RGB三色的灰度图叠加而成,而每个灰度图片也是一原创 2020-07-17 11:54:35 · 6625 阅读 · 0 评论 -
人工智能与深度学习概念(2)——人工神经网络-ANN
前言 在这主要将人工神经网络,在讲之前要先了解人工智能与深度学习的关系。人工智能: 具有高度综合性和交叉性的学科,其研究范畴包括:自动推理、知识表达、专家系统、机器学习等。机器学习: 机器学习是人工智能的核心,是人工智能的一个重要分支,其应用遍历了人工智能的各个领域,涉及的算法包括:决策树、支持向量机(SVM)、人工神经网络、聚类、贝叶斯分类器、规则学习、强化学习等。深度学习: 这个概念是人工神经网络经过发展,进入了一个深层次的状态,便就是现在的深度学习。更深的网络使得模型的性能更好,原创 2020-07-16 14:37:32 · 1888 阅读 · 0 评论 -
人工智能与深度学习概述(1)
1、人工智能定义人工智能是计算机科学的重要分支之一。它企图了解智能实质, 并生产出一种新的能以人类智能相似的方式做出反应的智能机器, 机器人、自然语言识别处理、专家系统、图像识别等技术均属于人工智能范畴。在电气自动化领域当中, 人工智能与传统人工控制相比, 其最大的特点在于能够以计算机技术为辅助, 完全实现机械设备自动化、精确化控制, 能够大幅度节约人力资源。在工业化生产过程中, 通过人工智能技术能够对各项信息数据进行实时传输、动态分析、处理, 并能够将生产过程中存在的问题及时向控制管理人员反馈, 最大程原创 2020-07-15 13:52:32 · 685 阅读 · 0 评论