ndarray是一种多维数组对象
data=[[1,2,3],[4,5,6]]
arr=np.array(data,dtype=np.int32)
print(arr)
print("shape",arr.shape)
print(arr.ndim)
#[[1 2 3]
# [4 5 6]]
#shape (2, 3)
#2
np.arange(2,10) #类似于range
#array([2, 3, 4, 5, 6, 7, 8, 9])
另外zeros和ones可以创建指定长度或形状的全零或全一数组。
转换数据类型
arr_float=arr.astype(np.float64)
arr_float
#array([[1., 2., 3.],
# [4., 5., 6.]])
print(1/arr_float)
#[[1. 0.5 0.33333333]
# [0.25 0.2 0.16666667]]
ndarray的切片是原始数组的视图而不是副本,也就是说在切片上操作相当于在原数组操作。
arr_slice=arr[0][:2]
arr_slice
#array([1, 2])
arr_slice[1]=10
arr
#array([[ 1, 10, 3],
# [ 4, 5, 6]])