numpy多维数组

ndarray是一种多维数组对象

data=[[1,2,3],[4,5,6]]
arr=np.array(data,dtype=np.int32)
print(arr)
print("shape",arr.shape)
print(arr.ndim)

#[[1 2 3]
# [4 5 6]]
#shape (2, 3)
#2
np.arange(2,10) #类似于range

#array([2, 3, 4, 5, 6, 7, 8, 9])

另外zeros和ones可以创建指定长度或形状的全零或全一数组。

转换数据类型

arr_float=arr.astype(np.float64)
arr_float

#array([[1., 2., 3.],
#      [4., 5., 6.]])
print(1/arr_float)

#[[1.         0.5        0.33333333]
# [0.25       0.2        0.16666667]]

ndarray的切片是原始数组的视图而不是副本,也就是说在切片上操作相当于在原数组操作。

arr_slice=arr[0][:2]
arr_slice
#array([1, 2])
arr_slice[1]=10
arr
#array([[ 1, 10,  3],
#      [ 4,  5,  6]])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值