没有尝试过,有时间再试
1.背景
Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份。这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快;同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据。为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本。如果在读取程序的同一个机架上有一个副本,那么就读取该副本。如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本。那么Hadoop是如何确定任意两个节点是位于同一机架,还是跨机架的呢?答案就是机架感知。默认情况下,hadoop的机架感知是没有被启用的。所以,在通常情况下,hadoop集群的HDFS在选机器的时候,是随机选择的,也就是说,很有可能在写数据时,hadoop将第一块数据block1写到了rack1上,然后随机的选择下将block2写入到了rack2下,此时两个rack之间产生了数据传输的流量,再接下来,在随机的情况下,又将block3重新又写回了rack1,此时,两个rack之间又产生了一次数据流量。在job处理的数据量非常的大,或者往hadoop推送的数据量非常大的时候,这种情况会造成rack之间的网络流量成倍的上升,成为性能的瓶颈,进而影响作业的性能以至于整个集群的服务
2.配置
默认情况下,namenode启动时候日志是这样的:
- 2016-07-17 17:27:26,423 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /default-rack/ 192.168.147.92:50010
要将hadoop机架感知的功能启用,配置非常简单,在 NameNode所在节点的/home/bigdata/apps/hadoop/etc/hadoop的core-site.xml配置文件中配置一个选项:
- <property>
- <name>topology.script.file.name</name>
- <value>/home/bigdata/apps/hadoop/etc/hadoop/topology.sh</value>
- </property>
至于脚本的编写,就需要将真实的网络拓朴和机架信息了解清楚后,通过该脚本能够将机器的ip地址和机器名正确的映射到相应的机架上去。一个简单的实现如下:
- #!/bin/bash
- HADOOP_CONF=/home/bigdata/apps/hadoop/etc/hadoop
- while [ $# -gt 0 ] ; do
- nodeArg=$1
- exec<${HADOOP_CONF}/topology.data
- result=""
- while read line ; do
- ar=( $line )
- if [ "${ar[0]}" = "$nodeArg" ]||[ "${ar[1]}" = "$nodeArg" ]; then
- result="${ar[2]}"
- fi
- done
- shift
- if [ -z "$result" ] ; then
- echo -n "/default-rack"
- else
- echo -n "$result"
- fi
- done
192.168.147.91 tbe192168147091 /dc1/rack1
192.168.147.92 tbe192168147092 /dc1/rack1
192.168.147.93 tbe192168147093 /dc1/rack2
192.168.147.94 tbe192168147094 /dc1/rack3
192.168.147.95 tbe192168147095 /dc1/rack3
192.168.147.96 tbe192168147096 /dc1/rack3
需要注意的是,在Namenode上,该文件中的节点必须使用IP,使用主机名无效,而Jobtracker上,该文件中的节点必须使用主机名,使用IP无效,所以,最好ip和主机名都配上。
这样配置后,namenode启动时候日志是这样的:
- 2016-07-17 17:16:27,272 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /dc1/rack3/ 192.168.147.94:50010
查看HADOOP机架信息命令:
- ./hadoop dfsadmin -printTopology
- Rack: /dc1/rack1
- 192.168.147.91:50010 (tbe192168147091)
- 192.168.147.92:50010 (tbe192168147092)
- Rack: /dc1/rack2
- 192.168.147.93:50010 (tbe192168147093)
- Rack: /dc1/rack3
- 192.168.147.94:50010 (tbe192168147094)
- 192.168.147.95:50010 (tbe192168147095)
- 192.168.147.96:50010 (tbe192168147096)
3.增加数据节点,不重启NameNode
假设Hadoop集群在192.168.147.68上部署了NameNode和DataNode,启用了机架感知,执行bin/hadoop dfsadmin -printTopology看到的结果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
现在想增加一个物理位置在rack2的数据节点192.168.147.69到集群中,不重启NameNode。
首先,修改NameNode节点的topology.data的配置,加入:192.168.147.69 dbj69 /dc1/rack2,保存。
- 192.168.147.68 dbj68 /dc1/rack1
- 192.168.147.69 dbj69 /dc1/rack2
- Rack: /dc1/rack1
- 192.168.147.68:50010 (dbj68)
- Rack: /dc1/rack2
- 192.168.147.69:50010 (dbj69)
注意:如果不将dbj69的配置加入到topology.data中,执行sbin/hadoop-daemons.sh start datanode启动数据节点dbj69,datanode日志中会有异常发生,导致dbj69启动不成功。
- 2016-07-17 10:51:33,502 FATAL org.apache.hadoop.hdfs.server.datanode.DataNode: Initialization failed for block pool Block pool BP-1732631201-192.168.147.68-1385000665316 (storage id DS-878525145-192.168.147.69-50010-1385002292231) service to dbj68/192.168.147.68:9000
- org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.net.NetworkTopology$InvalidTopologyException): Invalid network topology. You cannot have a rack and a non-rack node at the same level of the network topology.
- at org.apache.hadoop.net.NetworkTopology.add(NetworkTopology.java:382)
- at org.apache.hadoop.hdfs.server.blockmanagement.DatanodeManager.registerDatanode(DatanodeManager.java:746)
- at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.registerDatanode(FSNamesystem.java:3498)
- at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.registerDatanode(NameNodeRpcServer.java:876)
- at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolServerSideTranslatorPB.registerDatanode(DatanodeProtocolServerSideTranslatorPB.java:91)
- at org.apache.hadoop.hdfs.protocol.proto.DatanodeProtocolProtos$DatanodeProtocolService$2.callBlockingMethod(DatanodeProtocolProtos.java:20018)
- at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:453)
- at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1002)
- at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1701)
- at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1697)
- at java.security.AccessController.doPrivileged(Native Method)
- at javax.security.auth.Subject.doAs(Subject.java:415)
- at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
- at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1695)
- at org.apache.hadoop.ipc.Client.call(Client.java:1231)
- at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:202)
- at $Proxy10.registerDatanode(Unknown Source)
- at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
- at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
- at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
- at java.lang.reflect.Method.invoke(Method.java:601)
- at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:164)
- at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:83)
- at $Proxy10.registerDatanode(Unknown Source)
- at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolClientSideTranslatorPB.registerDatanode(DatanodeProtocolClientSideTranslatorPB.java:149)
- at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.register(BPServiceActor.java:619)
- at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:221)
- at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:660)
- at java.lang.Thread.run(Thread.java:722)
4.节点间距离计算
有了机架感知,NameNode就可以画出下图所示的datanode网络拓扑图。D1,R1都是交换机,最底层是datanode。则H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。这些rackid信息可以通过topology.script.file.name配置。有了这些rackid信息就可以计算出任意两台datanode之间的距离,得到最优的存放策略,优化整个集群的网络带宽均衡以及数据最优分配。
- distance(/D1/R1/H1,/D1/R1/H1)=0 相同的datanode
- distance(/D1/R1/H1,/D1/R1/H2)=2 同一rack下的不同datanode
- distance(/D1/R1/H1,/D1/R2/H4)=4 同一IDC下的不同datanode
- distance(/D1/R1/H1,/D2/R3/H7)=6 不同IDC下的datanode