- 博客(165)
- 收藏
- 关注
原创 深度学习常用脚本总结
📌 视频场景切换检测📌 基于深度学习的车牌检测、识别(含UI界面,Python代码)📌模型加载 torch.load() 、torch.load_state_dict()📌 torch.cuda.synchronize() — 正确的测试模型推理时间📌 torch中的model.eval()、model.train()详解📌 np.pad 详解📌 np.hstack、np.vstack — 横向、纵向拼接图片-B站📌 img[:, :, ::-1] 通俗理解。
2023-10-10 15:23:56 7850 2
原创 实时车辆行人多目标检测与跟踪系统(含UI界面,Python代码)
本文将详细介绍如何使用深度学习中的YOLOv5和OCTrack算法实现车辆、行人等多目标的实时检测和跟踪,并利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件进行检测和跟踪,也可以通过电脑自带的摄像头进行实时处理。此外,您还可以更换自己训练的yolov5模型,进行自己数据的跟踪。该系统界面优美,检测精度高,功能强大。它具备多目标实时检测、跟踪和计数功能,同时可以自由选择感兴趣的跟踪目标。本博文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考。
2023-09-20 19:04:57 7766 6
原创 yolo系列目标分类模型训练结果查看
验证集是模型在训练过程中未见过的数据,验证损失用于评估模型的泛化能力,即对新数据的预测能力。Top-5准确率:Top-5准确率从0.8提升到1.0,这表明在模型的前五个预测中,所有情况下至少有一个是正确的,这是一个非常强的表现。归一化后的混淆矩阵显示的是预测结果的相对比例或百分比,可以更清楚地了解模型在不同类别上的分类准确性。混淆矩阵是一个表格,表格的行代表实际的类别,列代表模型预测的类别。训练损失:随着训练的进行,损失值从3.6逐渐下降到2.6左右,这表明模型在训练集上的表现在改善。
2024-05-04 11:50:27 2481
原创 yolo系列目标检测模型训练结果分析
mAP是用Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值,@0.5:0.95表示阈值取0.5:0.05:0.95后取均值。曲线上的每个点表示在特定的置信度阈值下的准确率。在目标检测任务中,召回率是指在所有实际为正例的样本中,模型成功预测为正例的样本所占的比例。在分类任务中,精确率是指在所有预测为正例的样本中,实际为正例的样本所占的比例。归一化后的混淆矩阵显示的是预测结果的相对比例或百分比,可以更清楚地了解模型在不同类别上的分类准确性。
2024-04-12 15:15:21 8512 1
原创 PyQt 报错 This application failed to start because no Qt platform plugin could be initialized.
我这里路径是:C:\Users\86130\anaconda3\envs\pytorch\Lib\sitepackages\PySide2\plugins\platforms。这是以Pyside2为例,PyQt 一样是找 platforms文件夹,添加到路径下。点击浏览目录,找到运行环境下面的安装包里面对应的platforms文件。变量名 QT_QPA_PLATFORM_PLUGIN_PATH。1.设置系统环境变量。
2024-03-07 11:58:22 1675
原创 Pytorch 注意力机制解析与代码实现
SE注意力模块是一种通道注意力模块,SE模块能对输入特征图进行通道特征加强,且不改变输入特征图的大小。SE模块的S(Squeeze):对输入特征图的空间信息进行压缩SE模块的E(Excitation):学习到的通道注意力信息,与输入特征图进行结合,最终得到具有通道注意力的特征图SE模块的作用是在保留原始特征的基础上,通过学习不同通道之间的关系,提高模型的表现能力。在卷积神经网络中,通过引入SE模块,可以动态地调整不同通道的权重,从而提高模型的表现能力。1、对输入进来的特征层进行全局平均池化。
2023-11-01 17:35:00 2683 3
原创 pycharm安装(windows)
下拉一下,直接下载社区版就行,是免费的,功能足够用了。2.安装(1) 找到你下载PyCharm的路径,双击.exe文件进行安装。(2) 点击 Next 后,我们进行选择安装路径页面(不要选择带中文和空格的目录)选择好路径后,点击 Next 进行下一步(3)进入 Installation Options(安装选项)页面,全部勾选上。点击 Next(4)进入 Choose Start Menu Folder 页面,直接点击 Install 进行安装。
2023-09-16 20:35:13 1567
原创 pytorch安装(windows)
torch总共分为两个版本,GPU版和CPU版,CPU版安装非常简单,直接安装即可,在此详细介绍 GPU 版的安装方式。GPU版安装需要注意以下几个地方,需要进行匹配才能安装上,否则即便安装上也运行不了(1)CUDA的版本(2)python的版本(3)操作系统,本博客以 windows 为例。
2023-09-15 21:29:28 6318 2
原创 python环境安装(windows)
DownloadsdownloadsDownloadexe到这里就下载完成了,接下来可以进行下一步的安装了。
2023-09-14 22:55:29 3055
原创 卷积过程详细讲解
卷积过程如下,每一个通道的像素值与对应的卷积核通道的数值进行卷积,因此每一个通道会对应一个输出卷积结果,三个卷积结果对应位置累加求和,得到最终的卷积结果**(这里卷积输出结果通道只有1个,因为卷积核只有1个。即:由于只有一个卷积核,因此卷积后只输出单通道的卷积结果(黄色的块状部分表示一个卷积核,黄色块状是由三个通道堆叠在一起表示的,每一个黄色通道与输入卷积通道分别进行卷积,也就是channel数量要保持一致,图片组这里只是堆叠放在一起表示而已)。:卷积核大小,可以理解为对每个通道上的卷积的尺寸大小。
2023-08-24 11:32:09 2506
原创 python 进程间通信 Queue()、Pipe()、manager.list()、manager.dict()、manager.Queue()
python、进程间通信汇总
2023-05-05 11:58:44 1210
原创 opencv 边缘检测 cv2.Canny()详解
可选参数,用于存储边缘检测的结果。如果没有指定该参数,则函数会自动创建一个与输入图像相同大小的数组来存储检测到的边缘图像。函数是OpenCV中用于边缘检测的函数,其主要功能是检测图像中的边缘并标记出来。函数进行边缘检测时,阈值的选择对最终的结果有很大的影响。:第一个阈值,用于边缘检测中的滞后阈值,建议取值为100。:第二个阈值,用于边缘检测中的滞后阈值,建议取值为200。:可选参数,用于指定Sobel算子的大小,建议取值为3。:要进行边缘检测的输入图像,可以是灰度图像或彩色图像。需要注意的是,在使用。
2023-03-14 19:26:09 14713
原创 torch 正确的测试模型推理时间 torch.cuda.synchronize()
torch 正确的测试模型推理时间 torch.cuda.synchronize()
2023-03-09 13:49:41 1504
原创 torch.load() 、torch.load_state_dict() 详解
torch.load() 、torch.load_state_dict() 详解
2023-03-08 14:21:42 21061
原创 python opencv 判断点是否在区域内——cv2.pointPolygonTest()
python opencv 判断点是否在区域内 cv2.pointPolygonTest()
2023-03-03 20:10:06 4692
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人